Экспериментальные статьи

УДК 612.258.1+612.014.464+57.084.1

DOI: 10.33910/2687-1270-2020-1-2-101-107

Участие оксида азота в механизмах влияния провоспалительного цитокина ИЛ-1β на гиперкапнический вентиляционный ответ

Н. П. Александрова¹, Г. А. Данилова $^{\square 1}$, А. А. Клинникова¹

¹Институт физиологии им. И. П. Павлова РАН, 199034, Россия, Санкт-Петербург, наб. Макарова, д. 6

Сведения об авторах

Нина Павловна Александрова, SPIN-код: 4994-4591, Scopus AuthorID: 56249021000, ORCID: 0000-0002-5564-161X, e-mail: naleks54@yandex.ru
Галина Анатольевна Данилова, SPIN-код: 6784-1326, Scopus AuthorID: 7003784398, ORCID: 0000-0001-8091-0618, e-mail: danilovaga@infran.ru
Анна Андреевна Клинникова, SPIN-код: 8341-1551, ORCID: 0000-0002-2728-423X,

e-mail: klinnikova.an@gmail.com

Для цитирования:

Александрова, Н. П., Данилова, Г. А., Клинникова, А. А. (2020) Участие оксида азота в механизмах влияния провоспалительного цитокина ИЛ-1β на гиперкапнический вентиляционный ответ. Интегративная физиология, т. 1, № 2, с. 101–107. DOI: 10.33910/2687-1270-2020-1-2-101-107

Получена 2 декабря 2019; прошла рецензирование 11 февраля 2020; принята 25 февраля 2020.

Права: © Авторы (2020). Опубликовано Российским государственным педагогическим университетом им. А. И. Герцена. Открытый доступ на условиях лицензии СС BY-NC 4.0.

Анномация. Целью данного исследования было выяснение роли нитрергических механизмов в способности основного провоспалительного цитокина $И\Lambda$ - 1β оказывать влияние на паттерн дыхания и чувствительность респираторной системы к гиперкапнии. Эксперименты проводились на трахеостомированных наркотизированных крысах. Гиперкапнический вентиляторный ответ оценивался методом возвратного дыхания гипероксически-гиперкапнической газовой смесью до и после церебровентрикулярного введения $И\Lambda$ - 1β . Для выявления участия оксида азота в вентиляционных эффектах $U\Lambda$ - 1β использовался неспецифический ингибитор NO-синтазной активности L-NAME.

Установлено, что при экзогенном повышении церебрального уровня $И\Lambda$ - 1β наблюдается достоверное увеличение вентиляции легких на фоне снижения вентиляционной чувствительности к гиперкапнии. Прирост вентиляционного ответа на гиперкапнический стимул уменьшается почти в два раза на 40 мин действия цитокина. При предварительном введении L-NAME респираторные эффекты $U\Lambda$ - 1β не проявляются. Сделан вывод об участии оксида азота в модуляции рефлекторных механизмов регуляции дыхания в условиях воспаления, при активации иммунной системы и повышении в организме уровня провоспалительных цитокинов.

Ключевые слова: цитокин, интерлейкин-1бета, гиперкапния, респираторный хеморефлекс, дыхание, вентиляция, NO-синтаза.

The role of nitric oxide in the effects of the pro-inflammatory cytokine IL-1β on the hypercapnic ventilation response

N. P. Aleksandrova¹, G. A. Danilova^{⊠1}, A. A. Klinnikova¹

¹ Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova Emb., Saint Petersburg 199034, Russia

Authors

Nina P. Aleksandrova, SPIN: 4994-4591, Scopus AuthorID: 56249021000, ORCID: <u>0000-0002-5564-161X</u>, e-mail: <u>naleks54@yandex.ru</u>

Galina A. Danilova, SPIN: 6784-1326, Scopus AuthorID: 700

Scopus AuthorID: 7003784398, ORCID: <u>0000-0001-8091-0618</u>, e-mail: <u>danilovaga@infran.ru</u>

Anna A. Klinnikova, SPIN: 8341-1551,

ORCID: 0000-0002-2728-423X, e-mail: klinnikova.an@gmail.com

For citation: Aleksandrova, N. P., Danilova, G. A., Klinnikova, A. A. (2020) The role of nitric oxide in the effects of the pro-inflammatory cytokine IL-1 β on the hypercapnic ventilation response. *Integrative Physiology*, vol. 1, no. 2, pp. 101–107.

DOI: 10.33910/2687-1270-2020-1-2-101-107

Received 2 December 2019; reviewed 11 February 2020; accepted 25 February 2020.

Copyright: © The Authors (2020). Published by Herzen State Pedagogical University of Russia. Open access under CC BY-NC License 4.0.

Abstract. The aim of the current study was to compare the respiratory effects of IL-1 β before and after pre-treatment with L-NAME, a nonspecific NO-synthases inhibitor.

The experiments were performed on tracheotomised anaesthetised rats. The hypercapnic ventilatory response was measured by means of the rebreathing method using a hyperoxic-hypercapnic gas mixture (60 % O2, 7 % CO2) before and after the cerebroventricular administration of human recombinant IL-1 β in the amount of 500 ng dissolved in 10 μ l of saline. In order to determine the role of the NO-pathway in the ventilatory effects of IL-1 β , L-NAME, a non-specific inhibitor of NO-synthase, was used.

As a result, the slope of the ventilatory response to carbon dioxide decreased almost twofold at 40 min. after the cerebroventricular administration of IL-1 β . In contrast, the basal level of lung ventilation increased after the elevation of IL-1 β in CSF. L-NAME pre-treatment reduced these respiratory effects of IL-1 β . The data indicate that the inhibitor of NO-synthase significantly reduces the effect of the pro-inflammatory cytokine IL-1 β .

The authors conclude that the ability of IL-1 β to enhance basal ventilation and to reduce the ventilatory hypercapnic response may be mediated by NO-dependent mechanisms.

Keywords: cytokines, interleukin-1, hypercapnia, respiratory chemoreflex, breathing, ventilation, NO-synthase.

Введение

К настоящему времени установлено, что цитокины, биологически активные пептиды, экспрессируемые иммунокомпетентными клетками, участвуют в нейроиммунных взаимодействиях, оказывая прямое или опосредованное влияние на клетки центральной нервной системы (Мюльберг, Гришина 2006). Иммуногистохимические исследования показали наличие экспрессии цитокинов и их рецепторов в ядре солитарного тракта и в вентролатеральном отделе продолговатого мозга, т. е. в респираторно зависимых районах ствола мозга (Churchill, Taishi, Wang et al. 2006). Это позволяет предполагать участие провоспалительных цитокинов в центральных механизмах регуляции дыхания. Наши предыдущие исследования подтверждают это предположение, показывая, что экзогенное повышение церебрального уровня ИΛ-1β, ключевого провоспалительного цитокина, вызывает изменение паттерна дыхания и ослабление вентиляторного ответа на гиперкапнию (Aleksandrova, Danilova 2010; Aleksandrova, Danilova, Aleksandrov 2015). Снижение вентиляторной чувствительности к гиперкапнии было обнаружено и при усилении эндогенной продукции ФНО-α (фактора некроза опухолей), который также является провоспалительным цитокином, близким по своим свойствам к $И\Lambda$ -1 β (Gosselin et al. 2003). В дальнейшем было установлено, что в модуляции дыхательных хеморефлексов, вызванной увеличением уровня ИΛ-1β в крови и/или в цереброспинальной жидкости, участвуют циклооксигеназные пути. Активация циклооксигеназы и усиление синтеза простагландинов является, вероятно, одним из основных специфических механизмов,

посредством которого ИЛ-1β может влиять на функцию респираторных нейронов и изменять функциональное состояние дыхательной системы (Aleksandrova, Danilova, Aleksandrov 2015; Hofstetter, Saha, Siljehav et al. 2007; Olsson, Kayhan, Lagercrantz, Herlenius 2003). Однако известно, что влияние $И\Lambda$ -1 β на физиологические функции может быть опосредовано множественными путями, в том числе и через высвобождение оксида азота (Graff, Gozal 1999). Это позволяет предполагать, что усиление синтеза оксида азота клетками, которое происходит при взаимодействии ИΛ-1β с соответствующим мембранным рецептором, может оказаться еще одним механизмом, опосредующим влияние воспаления на респираторную функцию.

Целью настоящей работы явилась проверка этого предположения и исследование возможного участия NO-ергических механизмов в реализации влияний повышенного церебрального уровня ИΛ-1β на паттерн дыхания и гиперкапнический вентиляторный ответ. Для достижения этой цели были проведены эксперименты с интрацеребровентрикулярным введением ИЛ-1В на фоне действия L-нитро-аргинин-метил-эфира (L-NAME) — неспецифического блокатора NO-синтазы, фермента, который катализирует трансформацию L-аргинина в L-цитруллин и газообразные медиаторы NO. LNAME предотвращает проникновение в клетки L-аргинина и ингибирует его взаимодействие с любыми изоформами NO-синтаз, что уменьшает синтез эндогенного оксида азота.

Методика

Эксперименты проведены на 32 наркотизированных трахеостомированных спонтанно дышащих крысах-самцах линии Wistar весом 250–300 г. Наркоз осуществлялся внутрибрюшинным введением уретана из расчета 1400 мг/кг. Ректальная температура измерялась на протяжении всего эксперимента и поддерживалась на уровне, не превышавшем 38 °С. Исследование проводилось на животных из биоколлекции (ЦКП Биоколлекция ИФ РАН) с соблюдением основных норм и правил биомедицинской этики (European Community Council Directives 86/609/EEC).

Во всех экспериментах применялась пневмотахографическая методика для регистрации объемно-временных параметров внешнего дыхания. К трахеостомической канюле подключалась пневмометрическая трубка MLT-1L (ADInstruments, Австралия), которая обеспечивала ламинарность проходящего сквозь нее

воздушного потока. При помощи пневмотахограммы измеряли длительность вдоха и выдоха, максимальную скорость воздушного потока и частоту дыхательных движений (ЧДД). Дыхательный объем (ДО) рассчитывался при помощи автоматического интегрирования пневмотахографической кривой в спирографическую. Минутный объем дыхания рассчитывался как произведение ДО на ЧДД.

Физиологические параметры регистрировались до введения $И\Lambda$ - 1β и каждые 20 минут после его введения на протяжении 90 минут. Вентиляторный ответ на гиперкапнию тестировали при проведении 4-минутных проб с возвратным дыханием гипероксически-гиперкапнической газовой смесью (7 % CO_{2} , 60 % O_{2}). Парциальное давление углекислого газа ($P_{E}CO_{2}$) в конечной порции выдыхаемого воздуха измерялось при помощи метода массспектрометрии.

ИΛ-1β вводили в правый боковой желудочек головного мозга. Координаты для введения определялись по стереотаксическому атласу мозга крысы (Paxinos, Watson 1982) и составляли 0,8 мм каудальнее уровня bregma, 1,5 мм латеральнее средней линии и 3,5–4,0 мм от поверхности черепа в количестве 500 нг на животное.

При исследовании NO-ергических механизмов, участвующих в реализации респираторных эффектов ИΛ-1β, за 10 мин до введения цитокина производили внутривенное введение в хвостовую вену L-NAME неизбирательного ингибитора NO-синтаз в количестве 10 мг/кг массы тела.

Статистическая обработка данных производилась программными средствами с использованием статистического пакета Statistic for Windows и Microsoft Excel. Вычислялась средняя величина регистрируемых параметров и ошибка средней. Для выявления достоверности различий использовался однофакторный дисперсионный анализ. Различия считались достоверными при Р < 0,05.

Результаты и обсуждение

Эксперименты с церебровентрикулярным введением $И\Lambda$ -1 β показали, что экзогенное повышение церебрального уровня данного провоспалительного цитокина вызывает достоверное увеличение ΔO , $MO\Delta$ и средней скорости инспираторного потока ($V_{\text{инсп}}$) (табл. 1). Помимо этого, наблюдается тенденция к увеличению $\Psi\Delta \Delta$. Изменения параметров дыхания отмечались уже на 20-й минуте после введения $\Psi\Delta \Delta$ и минуте становились статистически

Табл. 1. Изменение параметров дыхания при повышении церебрального уровня ИЛ-1 β и сочетанном действии ИЛ-1 β с L-NAME

Table 1. Effects of interleukin-1	β and interleukin-1β	B with L-NAME pre-treatment o	on the breathing pattern

Параметр	ИΛ-1β (n = 8)			ИΛ-1β + L-NAME (n = 8)		
	фон	40 мин	60 мин	фон	40 мин	60 мин
МОД (мл·мин ⁻¹)	104 ± 9,0	126 ± 3,7**	131 ± 5,4**	227 ± 11,0	240 ± 12,9	252 ± 14,2
ДО (мл)	1,0 ± 0,05	1,13 ± 0,06*	1,17 ± 0,04*	2,2 ± 0,08	2,2 ± 0,09	2,2 ± 0,11
ЧД (цик∧·мин ⁻¹)	109 ± 6,0	113 ± 6,8	115 ± 6,4	105 ± 4,0	110 ± 2,0	116 ± 3,0
Vинс (мл·с ⁻¹)	3,7 ± 0,27	4,4 ± 0,12*	4,5 ± 0,19*	8,1 ± 0,33	8,0 ± 0,42	8,7 ± 0,48

Примечание: * — P < 0.05; ** — P < 0.01 по сравнению с фоновыми величинами * — P < 0.05; ** — P < 0.01 vs. baseline

значимыми: ДО достоверно возрастал в среднем на 13 ± 3 %, МОД на 40 ± 5 %, $V_{_{\rm инсп}}$ на 20 ± 3 %. Церебровентрикулярное введение ИЛ-1 β на фоне действия L-NAME не вызывало достоверных изменений в величине объемно-временных параметров паттерна дыхания.

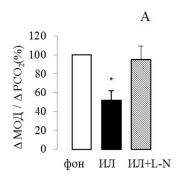
Анализ вентиляционного ответа на гиперкапнию выявил значительное изменение чувствительности дыхательной системы к гиперкапнической стимуляции при экзогенном повышении церебрального уровня $И\Lambda$ -1 β . Было показано, что после введения цитокина уменьшается угол наклона линии тренда, усредняющей вентиляторные кривые, зарегистрированные в нескольких экспериментах (рис. 1А, Б, В). Как и следовало ожидать, при возвратном дыхании гиперкапнически-гипероксической газовой смесью (7 % СО, 60 % О,) по мере роста парциального давления СО, в крови наблюдалось увеличение $V_{\text{инсп}}$, ΔO и $\tilde{MO}\Delta$ как до введения ИΛ-1β, так и после его введения (Данилова 2014). Однако после введения препарата линии тренда становились более пологими, что свидетельствует о снижении вентиляционной чувствительности к гиперкапнической стимуляции. Отмеченный респираторный эффект ИЛ-1β отчетливо проявлялся через 20 минут действия вещества, через 40 минут был выражен максимально и исчезал через 90 минут после введения препарата (линии тренда становились параллельными). Проведение количественных расчетов показало достоверное снижение величины прироста МОД, ДО и $V_{\text{инсп}}$ в ответ на гиперкапническую стимуляцию на фоне действия $И\Lambda$ -1 β (рис. 2). Максимальный эффект проявлялся на 40-й минуте действия цитокина. Прирост МОД при увеличении $P_{\rm FT}{
m CO}_2$ на 1 мм рт. ст. через 40 минут действия $И\Lambda$ -1 β снижался на 47 \pm 9 %, прирост

 ΔO — на $40 \pm 8 \%$ и $V_{\text{инсп}}$ на $38 \pm 9 \%$ по сравнению с фоновыми величинами.

При проведении серии контрольных экспериментов с церебровентрикулярным введением физиологического раствора не было выявлено изменений дыхательных параметров как в спокойном состоянии, так и при гиперкапнической стимуляции.

Повышение церебрального уровня ИЛ-1В на фоне ингибирования NO-синтазной активности статистически значимых изменений в объемно-временных параметрах дыхания не вызывало (табл. 1). Кроме того, при сочетанном действии $И\Lambda$ -1 β и L-NAME не было выявлено достоверных изменений чувствительности дыхательной системы к гиперкапнической стимуляции после введения ИЛ-1β. Повышение церебрального уровня ИΛ-1β на фоне действия L-NAME не вызывало достоверного снижения вентиляционного ответа на гиперкапнию: угол наклона линий тренда, характеризующий зависимость дыхательных параметров (МОД, ДО, $V_{_{\! ext{\tiny инсп}}}$) от величины гиперкапнической стимуляции, не изменялся после введения ИЛ-1В (рис. 1Г, Д, Е). Количественная оценка реакции на гиперкапнию после введения ИΛ-1β на фоне L-NAME показала, что в течение всего эксперимента отмечалась незначительная тенденция к снижению приростов МОД, ДО и $V_{\text{инсп}}$. Однако достоверных изменений прироста не наблюдалось (рис. 2).

Полученные данные указывают на то, что в основе модулирующего влияния провоспалительных цитокинов на центральные механизмы регуляции дыхания лежит усиление синтеза оксида азота. Мы предполагаем, что в наших экспериментах церебровентрикулярное



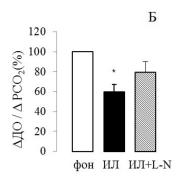

Рис. 1. Вентиляционный ответ на гиперкапнию. Панели А, Б, В: составляющие вентиляционного ответа до (сплошная линия) и через 40 мин после (пунктирная линия) церебрального введения $И\Lambda$ -1 β . Панели Γ , Δ , E: $U\Lambda$ -1 β — составляющие вентиляционного ответа до (сплошная линия) и через 40 мин после (пунктирная линия) сочетанного введения $U\Lambda$ -1 β и L-NAME

Fig. 1. Ventilatory response to hypercapnia in a representative animal before (solid line) and 40 min. after (dotted line) the cerebroventricular administration of interleukin-1beta (IL-1 β) with (A, B, B) and without (Γ , Λ , E) L-NAME pretreatment. IL-1 β treatment without L-NAME decreased the slope of minute ventilation, mean inspiratory flow, and tidal volume response, whereas IL-1 β treatment with L-NAME did not alter the ventilatory response

введение ИЛ-1β сопровождалось его взаимодействием с соответствующими рецепторами, локализованными на клетках нейроглии, а также на эпендимных клетках, выстилающих желудочки мозга, что вызывало усиление синтеза оксида азота, который мог изменять активность нейронов, участвующих в нейронных сетях, регулирующих дыхание. Как известно, небольшая молекула NO, обладая высокой проникающей способностью, может влиять на внутриклеточные процессы, не взаимодействуя с мембранными рецепторами, поскольку она способна легко диффундировать через клеточную мембрану (Александров и др. 2015; Brenman, Bredt 1996).

Кроме того, известно, что оксид азота обладает способностью усиливать синтез циклооксигеназы. В наших предыдущих исследо-

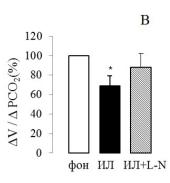


Рис. 2. Устранение ингибирующего влияния ИЛ-1β на вентиляторный гиперкапнический ответ при действии L-NAME через 40 минут после церебровентрикулярного введения ИЛ-1β. По оси ординат: прирост минутного объема дыхания (А), дыхательного объема (Б), средней скорости инспираторного потока (В) при увеличении РСО₂ на 1 мм рт. ст. Белые столбики — фоновое значение, черные столбики — действие ИЛ-1β, заштрихованные столбики — сочетанное действие L-NAME и ИЛ-1β.

* — достоверные отличия от фона при Р ≤ 0,05

Fig. 2. Change in the ventilatory response to hypercapnia slope as measured 40 min. after cerebroventricular administration of interleukin-1beta (IL-1 β) with (hatched bars) or without (black bars) L-NAME pretreatment. The slope of ventilatory volume gain (A), tidal volume (B), mean inspiratory flow (B). * — P < 0.05 vs. baseline

ваниях было установлено, что ослабление вентиляционного гиперкапнического ответа, вызванного повышением церебрального уровня ИΛ-1β, опосредовано действием простагландинов на медуллярные нейроны (Aleksandrova, Danilova, Aleksandrov 2015). Об этом свидетельствует отсутствие влияния церебровентрикулярных инъекций $И\Lambda$ - 1β на вентиляционный гиперкапнический ответ на фоне действия диклофенака, ингибирующего активность циклооксигеназы. Результаты данного исследования указывают на взаимодействие циклооксигеназных и нитрэргических механизмов в реализации респираторных эффектов провоспалительных цитокинов, так как доказывают, что ингибирование не только циклооксигеназных, но и NO-синтазных путей устраняет влияние $И\Lambda$ -1 β на гиперкапнический хеморефлекс. По-видимому, зарегистрированные нами респираторные эффекты ИΛ-1β вызваны действием

простагландинов, для усиления экспрессии которых необходима активация NO-синтазной активности и увеличение синтеза оксида азота, который является мощным индуктором экспрессии COX-2, фермента, необходимого для синтеза простагландинов.

Эксперименты с внутривенным введением только L-NAME без последующего повышения церебрального уровня ИЛ-1β также не выявили никаких изменений в параметрах системы внешнего дыхания. Отсутствие собственного респираторного эффекта ингибитора NO-синтазной активности свидетельствует о том, что в обычных условиях NO-синтазные пути не вовлечены в регуляцию паттерна дыхания и гиперкапнического хеморефлекса. Однако их роль в регуляции дыхания резко возрастает в условиях воспаления, при активации иммунной системы и повышении в организме уровня провоспалительных цитокинов.

Литература

Александров, В. Г., Александрова, Н. П., Туманова, Т. С. и др. (2015) Участие NO-ергических механизмов в реализации респираторных эффектов провоспалительного цитокина интерлейкина-1-бета. *Российский физиологический журнал им. И. М. Сеченова*, т. 101, № 12, с. 1372–1384.

Данилова, Г. А. (2014) *Роль провоспалительного цитокина интерлейкина-16ета в хеморецепторных механизмах регуляции дыхания. Диссертация на соискание степени кандидата биологических наук.* СПб., Институт физиологии им. И. П. Павлова РАН, 147 с.

Мюльберг, А. А., Гришина, Т. В. (2006) Цитокины как медиаторы нейроиммунных взаимодействий. *Успехи* ϕ изиологических наук, т. 37, № 1, с. 18–27.

Aleksandrova, N. P., Danilova, G. A. (2010) Effect of intracerebroventricular injection of interleukin-1-beta on the ventilatory response to hyperoxic hypercapnia. *European Journal of Medical Research*, vol. 15, suppl. II, pp. 3–6. PMID: 21147611. DOI: 10.1186/2047-783x-15-s2-3

- Aleksandrova, N. P., Danilova, G. A., Aleksandrov, V. G. (2015) Cyclooxygenase pathway in modulation of the ventilatory response to hypercapnia by interleukin-1β in rats. *Respiratory Physiology & Neurobiology*, vol. 209, pp. 85–90. PMID: 25511383. DOI: 10.1016/j.resp.2014.12.006
- Brenman, J. E., Bredt, D. S. (1996) Nitric oxide signaling in the nervous system. *Methods in Enzymology*, vol. 269, pp. 119–129. PMID: 8791642. DOI: 10.1016/s0076-6879(96)69014-4
- Churchill, L., Taishi, P., Wang, M. et al. (2006) Brain distribution of cytokine mRNA induced by systemic administration of interleukin-1β or tumor necrosis factor α. *Brain Research*, vol. 1120, no. 1, pp. 64–73. PMID: 17022949. DOI: 10.1016/j.brainres.2006.08.083
- Gosselin, L. E, Barkley, J. E, Spencer, M. J. et al. (2003) Ventilatory dysfunction in mdx mice: Impact of tumour necrosis factor-alpha deletion. *Muscle & Nerve*, vol. 28, no. 3, pp. 336–343. PMID: 12929194. DOI: 10.1002/mus.10431
- Graff, G. R., Gozal, D. (1999) Cardiorespiratory responses to interleukin-1β in adult rats: Role of nitric oxide, eicosanoids and glucocorticoids. *Archives of Physiology and Biochemistry*, vol. 107, no. 2, pp. 97–112. PMID: 10650342. DOI: 10.1076/apab.107.2.97.4344
- Hofstetter, A. O, Saha, S., Siljehav, V. et al. (2007) The induced prostaglandin E₂ pathway is a key regulator of the respiratory response to infection and hypoxia in neonates. *Proceedings of the National Academy of Sciences of the United States of America*, vol. 104, no. 23, pp. 9894–9899. PMID: 17535900. DOI: 10.1073/pnas.0611468104
- Olsson, A., Kayhan, G., Lagercrantz, H., Herlenius, E. (2003) IL-1β depresses respiration and anoxic survival *via* a prostaglandin-dependent pathway in neonatal rats. *Pediatric Research*, vol. 54, pp. 326–331. DOI: 10.1203/01. PDR.0000076665.62641.A2
- Paxinos, G., Watson, C. (1982) *The rat brain in stereotaxic coordinates*. Sydney: Academic Press, VII, 12 p., 71 bl. pl.

References

- Aleksandrova, N. P., Danilova, G. A. (2010) Effect of intracerebroventricular injection of interleukin-1-beta on the ventilatory response to hyperoxic hypercapnia. *European Journal of Medical Research*, vol. 15, suppl. II, pp. 3–6. PMID: 21147611. DOI: 10.1186/2047-783x-15-s2-3 (In English)
- Aleksandrova, N. P., Danilova, G. A., Aleksandrov, V. G. (2015) Cyclooxygenase pathway in modulation of the ventilatory response to hypercapnia by interleukin-1β in rats. *Respiratory Physiology & Neurobiology*, vol. 209, pp. 85–90. PMID: 25511383. DOI: 10.1016/j.resp.2014.12.006 (In English)
- Alexandrov, V. G., Alexandrova, N. P., Tumanova, T. S. et al. (2015) Uchastie NOergicheskikh mekhanizmov v realizatsii respiratornykh effektov provospalitel'nogo tsitokina interlejkina-1-beta [Participation of NO-ergic mechanisms in realization of respiratory effects of pro-inflammatory cytokine interleukin-1-beta]. *Rossijskij fiziologicheskij zhurnal im. I. M. Sechenova*, vol. 101, no. 12, pp. 1372–1384. (In Russian)
- Brenman, J. E., Bredt, D. S. (1996) Nitric oxide signaling in the nervous system. *Methods in Enzymology*, vol. 269, pp. 119–129. PMID: 8791642. DOI: 10.1016/s0076-6879(96)69014-4 (In English)
- Churchill, L., Taishi, P., Wang, M. et al. (2006) Brain distribution of cytokine mRNA induced by systemic administration of interleukin-1β or tumor necrosis factor α. *Brain Research*, vol. 1120, no. 1, pp. 64–73. PMID: 17022949. DOI: 10.1016/j.brainres.2006.08.083 (In English)
- Danilova, G. A. (2014) Rol' provospalitel'nogo tsitokina interlejkina-1beta v khemoretseptornykh mekhanizmakh regulyatsii dykhaniya [The role of the pro-inflammatory cytokine interleukin-1 beta in the chemoreceptor mechanisms of respiration regulation]. PhD dissertation (Biology). Saint Petersburg, Pavlov Institute of Physiology of the Russian Academy of Sciences, 147 p. (In Russian)
- Gosselin, L. E, Barkley, J. E, Spencer, M. J. et al. (2003) Ventilatory dysfunction in mdx mice: Impact of tumour necrosis factor-alpha deletion. *Muscle & Nerve*, vol. 28, no. 3, pp. 336–343. PMID: 12929194. DOI: 10.1002/mus.10431 (In English)
- Graff, G. R., Gozal, D. (1999) Cardiorespiratory responses to interleukin-1β in adult rats: Role of nitric oxide, eicosanoids and glucocorticoids. *Archives of Physiology and Biochemistry*, vol. 107, no. 2, pp. 97–112. PMID: 10650342. DOI: 10.1076/apab.107.2.97.4344 (In English)
- Hofstetter, A. O, Saha, S., Siljehav, V. et al. (2007) The induced prostaglandin E₂ pathway is a key regulator of the respiratory response to infection and hypoxia in neonates. *Proceedings of the National Academy of Sciences of the United States of America*, vol. 104, no. 23, pp. 9894–9899. PMID: 17535900. DOI: 10.1073/pnas.0611468104. (In English)
- Mulberg, A. A., Grishina, T. V. (2006) Tsitokiny kak mediatory nejroimmunnykh vzaimodejstvij [Cytokines as mediators of neuroimmune interactions]. *Uspekhi fiziologicheskikh nauk*, vol. 37, no. 1, pp. 18–27. (In Russian)
- Olsson, A., Kayhan, G., Lagercrantz, H., Herlenius, E. (2003) IL-1β depresses respiration and anoxic survival *via* a prostaglandin-dependent pathway in neonatal rats. *Pediatric Research*, vol. 54, pp. 326–331. DOI: 10.1203/01.PDR.0000076665.62641.A2 (In English)
- Paxinos, G., Watson, C. (1982) *The rat brain in stereotaxic coordinates.* Sydney: Academic Press, VII, 12 p., 71 bl. pl. (In English)