Неосознаваемые зрительные сигналы и непроизвольные реакции человека

Авторы

  • Юрий Евгеньевич Шелепин Институт физиологии им. И. П. Павлова РАН
  • Алексей Кольмарович Хараузов Институт физиологии им. И. П. Павлова РАН https://orcid.org/0000-0002-1352-5805
  • Ольга Анатольевна Вахрамеева Институт физиологии им. И. П. Павлова РАН
  • Ольга Викторовна Жукова Институт физиологии им. И. П. Павлова РАН
  • Сергей Вадимович Пронин Институт физиологии им. И. П. Павлова РАН
  • Олег Викторович Цветков Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова
  • Ксения Андреевна Скуратова Институт физиологии им. И. П. Павлова РАН https://orcid.org/0000-0001-8371-4348
  • Евгений Юрьевич Шелепин Институт физиологии им. И. П. Павлова РАН https://orcid.org/0000-0002-3124-5540

DOI:

https://doi.org/10.33910/2687-1270-2021-2-4-352-377

Ключевые слова:

зрение, восприятие, маскировка, осознаваемый стимул, неосознаваемый стимул, мимика, вызванные потенциалы, принятие решений, целенаправленная деятельность

Аннотация

В статье представлены психофизиологические исследования восприятия осознаваемой и неосознаваемой информации в процессе целенаправленной деятельности человека. Этот важнейший раздел сенсорной физиологии рассмотрен нами на примере восприятия изображений, содержащих осознаваемые и неосознаваемые (скрытые) лица. Разработаны методы маскировки сигналов (изображений лиц). Для решения поставленной задачи развиты методы выявления неосознаваемого восприятия по непроизвольным реакциям человека с помощью объективных физиологических методов интегративной оценки состояния человека. Особое внимание в статье уделено проблеме различий в передаче информации по крупноклеточным и по мелкоклеточным нейронным путям из сетчатки в подкорковые ядра: в наружное коленчатое тело, верхние бугры четверохолмия, в пульвинар, в амигдалярный комплекс и в гипоталамус. Детально обсуждается дальнейший анализ поступившей информации в дорзальной затылочно-теменно-лобной крупномасштабной нейронной сети и в вентральной затылочно-височно-лобной сети. Предложены некоторые алгоритмы описания работы этих нейронных сетей. С помощью психофоизологических методов регистрации движения глаз, ЭЭГ и фМРТ выявлены маркеры неосознаваемого восприятия. Экспериментально установлено влияние неосознаваемого восприятия на принятие решений, осуществляемых в нейронных сетях префронтальной коры. Предложена модель оппонентных взаимодействий вентральной и дорзальной нейронных сетей и реципрокных отношений нейронных сетей различных структур префронтальной коры. Выдвинуто предположение о том, как взаимосвязь осознаваемого и неосознаваемого восприятия обеспечивает принятие решения и эффективность целенаправленного поведения человека.

Библиографические ссылки

ЛИТЕРАТУРА

Бернар, К. (1867) Курс общей физиологии. Свойства живых тканей. СПб.: Издание О. И. Бакста, 299 с.

Бондарко, В. М., Данилова, М. В., Красильников, Н. Н. и др. (1999) Пространственное зрение. СПб.: Наука, 218 с.

Вахрамеева, О. А., Хараузов, А. К., Пронин, С. В. и др. (2016) Зрительный прайминг при распознавании мелких изображений в сцене, содержащей объекты разного размера. Физиология человека, т. 42, № 5, с. 39–48. https://doi.org/10.7868/S0131164616050180

Гершуни, Г. В. (1940) Электрофизиологический анализ деятельности слуховой системы. Физиологический журнал, т. 29, № 5, с. 369–379.

Глезер, В. Д. (1993) Зрение и мышление. СПб.: Наука, 284 с.

Глезер, В. Д., Цуккерман, И. И. (1961) Информация и зрение. М.; Л.: Изд-во Академии наук СССР, 183 с.

Кожевников, В. А. (1951) Электроэнцефалографическое изучение образования временных связей на звуковые раздражители у человека. Автореферат диссертации на соискание степени кандидата биологических наук. Л., Институт высшей нервной деятельности, 12 с.

Кожевников, В. А., Марусева, А. М. (1949) Электроэнцефалографическое изучение образования временных связей на неощущаемые раздражения у человека. Известия Академии наук СССР. Серия биологическая, т. 5, с. 560–569.

Красильников, Н. Н., Шелепин, Ю. Е., Красильникова, О. И. (1999) Применение принципов оптимального наблюдателя при моделировании зрительной системы человека. Оптический журнал, т. 66, № 9, c. 17–24.

Логунова, Е. В., Пронин, С. В., Шелепин, Ю. Е. (2014) Моделирование работы пространственно-частотных фильтров при восприятии сложных динамических сцен. Оптический журнал, т. 81, № 11, c. 62–68.

Мурыгин, К. В. (2003) Оптимизация габоровских вейвлет-преобразований для задачи распознавания человека по изображению лица. Искусственный интеллект, № 4, c. 223–229.

Подвигин, Н. Ф., Макаров, Ф. Н., Шелепин, Ю.Е. (1986) Элементы структурно-функциональной организации зрительно-глазодвигательной системы. Л.: Наука, 252 с.

Скуратова, К. А., Шелепин, Е. Ю., Яровая, Н. П. (2021) Оптический поиск и зрительный навык. Оптический журнал, т. 88, № 12, c. 28–35. https://www.doi.org/10.17586/1023-5086-2021-88-12-28-35

Хараузов, А. К., Васильев, П. П., Соколов, А. В. и др. (2015) Восприятие изображений в задачах зрительного поиска в условиях динамической помехи. Оптический журнал, т. 82, № 5, с. 42–55.

Хараузов, А. К., Шелепин, Ю. Е., Цветков, О. В. и др. (2020) Методы маскировки угрожающих изображений и электрофизиологические маркеры их неосознанного восприятия. Оптический журнал, т. 87, № 10, с. 69–80. https://doi.org/10.17586/1023-5086-2020-87-10-69-80

Цветков, Е. А., Краснощекова, Е. И. (2020) Амигдалярный комплекс. Физиология эмоций и памяти. СПб.: Изд-во СПбГУ, 200 с.

Чистович, Л. А. (1950) Условные кожно-гальванические реакции на неощущаемые звуковые раздражения. Автореферат диссертации на соискание степени кандидата биологических наук. Л., Физиологический институт им. И. П. Павлова, 8 с.

Шелепин, Ю. Е. (2017) Ведение в нейроиконику. СПб.: Троицкий мост, 352 с

Шелепин, Ю. Е., Колесникова, Л. Н., Левкович, Ю. И. (1985) Визоконтрастометрия: Измерение пространственных передаточных функций зрительной системы. Л.: Наука, 104 с.

Шелепин, Ю. Е., Рудой, И. С., Давыдов, А. Т. и др. (1997) Метод наркопсихотерапии больных алкоголизмом. В кн.: Новые подходы к диагностике и лечению алкоголизма. СПб.: Военно-медицинская академия имени С. М. Кирова, с. 51–53.

Шелепин, Ю. Е., Хараузов, А. К., Жукова, О. В. и др. (2020) Маскировка и обнаружение скрытых сигналов в динамических изображениях. Оптический журнал, т. 87, № 10, c. 89–102. https://doi.org/10.17586/1023- 5086-2020-87-10-89-102

Ajina, S., Bridge, H. (2017) Blindsight and unconscious vision: What they teach us about the human visual system. The Neuroscientist, vol. 23, no. 5, pp. 529–541. https://doi.org/10.1177/1073858416673817

Ajina, S., Pollard, M., Bridge, H. (2020) The superior colliculus and amygdala support evaluation of face trait in blindsight. Frontiers in Neurology, vol. 11, article 769. https://doi.org/10.3389/Fneur.2020.00769

Anastasio, T. J. (2015) Computer modeling in neuroscience: From imperative to declarative programming. In: N. Martí-Oliet, P. C. Ölveczky, C. Talcott (eds.). Logic, rewriting, and concurrency. Essays dedicated to Jose Meseguer on the occasion of his 65th birthday. Berlin: Springer Publ, pp. 97–113. https://doi.org/10.1007/978-3-319-23165-5_4

Bechara, A., Damasio, H., Damasio, A. R., Lee, G. P. (1999) Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, vol. 19, no. 13, pp. 5473–5481. https://doi.org/10.1523/JNEUROSCI.19-13-05473.1999

Dakin, S. C., Watt, R. J. (2009) Biological “bar codes” in human faces. Journal of Vision, vol. 9 (4), no. 2, pp. 1–10. https://doi.org/10.1167/9.4.2

Das, J. M., Siddiqui W. (2020) Kluver Bucy Syndrome. In: StatPearls. [S. l.]: StatPearls Publ. [Online]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK544221 (accessed 18.11.2021).

Duke-Elder, S. (1962) System of ophthalmology. Vol. VII. The foundation of ophthalmology. The investigation of indirect vision: The visual fields. St. Louis: Mosby Publ., pp. 393–425.

Elshawi, R., Sakr, S., Talia, D., Trunfio, P. (2018) Big data systems meet machine learning challenges: Towards big data science as a service. Big Data Research, vol. 14, pp. 1–11. https://doi.org/10.1016/j.bdr.2018.04.004

Fahland, D., Lubke, D., Mendling, J. et al. (2009) Declarative versus imperative process modeling languages: The issue of understandability. In: T. Halpin, J. Krogstie, S. Nurcan et al. (eds.). Enterprise, Business-process and information systems modeling. BPMDS 2009, EMMSAD 2009. Lecture notes in business information processing. Vol. 29. Berlin; Heidelberg: Springer Publ., pp. 353–366. https://doi.org/10.1007/978-3-642-01862-6_29

Farah, M. (1990) Visual Agnosia: Disorders of object recognition and what they tell us about normal vision. Cambridge.: MIT Press, 184 p.

Fredrikson, M. (1983) Reliability and validity of some specific fear questionnaires. Scandinavian Journal of Psychology, vol. 24, no. 4, pp. 331–334. https://doi.org/10.1111/j.1467-9450.1983.tb00507.x

Funahashi, S. (2017) Prefrontal contribution to decision-making under free-choice conditions. Frontiers in Neuroscience, vol. 11, article 431. https://doi.org/10.3389/fnins.2017.00431

Goodale, M., Milner, D. (2004) Sight unseen. An exploration of conscious and unconscious vision. Oxford: Oxford University Press, 232 p. https://doi.org/10.1093/acprof:oso/9780199596966.001.0001

Halbertsma, H. N., Bridge, H., Carvalho, J. et al. (2021) Visual field reconstruction in hemianopia using fMRI based mapping techniques. Frontiers in Human Neuroscience, vol. 15, article 713114. https://doi.org/10.3389/fnhum.2021.713114

Hansen, B. C., Johnson, A. P., Ellemberg, D. (2012) Different spatial frequency bands selectively signal for natural image statistics in the early visual system. Journal of Neurophysiology, vol. 108, no. 8, pp. 2160–2172. https://doi.org/10.1152/jn.00288.2012

Hyvarinen, J., Shelepin, Yu. E. (1979) Distribution of visual and somatic functions in the parietal associative area 7 of the monkey. Brain Research, vol. 169, no. 3, pp. 561–564. https://doi.org/10.1016/0006-8993(79)90404-9

Hurme, M., Koivisto, M., Revonsuo, A., Railo, H. (2019) V1 activity during feedforward and early feedback processing is necessary for both conscious and unconscious motion perception. Neuroimage, vol. 185, pp. 313–321. https://doi.org/10.1016/j.neuroimage.2018.10.058

Kawamura, K., Naito, J. (1984) Corticocortical projections to the prefrontal cortex in the rhesus monkey investigated with horseradish peroxidase techniques. Neuroscience Research, vol. 1, no. 2, p. 89–103. https://doi.org/10.1016/s0168-0102(84)80007-3

Klüver, H., Bucy, P. C. (1937) “Psychic blindness” and other symptoms following bilateral temporal lobectomy in rhesus monkeys. American Journal of Physiology, vol. 119, pp. 352–353.

Kordjamshidi, P., Roth, D., Kersting, K. (2019) Declarative learning-based programming as an interface to AI systems. [Online]. Available at: https://arxiv.org/pdf/1906.07809.pdf (accessed 18.11.2021).

Kropotov, J. D, Etlinger, S. C. (1999) Selection of actions in the basal ganglia- thalamocortical circuits: Review and model. International Journal of Psychophysiology, vol. 31, no. 3, pp. 197–217. https://doi.org/10.1016/s0167-8760(98)00051-8

Kulikowski, J. J. (2003) Neural basis of fundamental filters in vision. In: G. T. Buracas, O. Ruksenas, G. M. Boynton, T. D. Albright (eds.). Modulation of neuronal responses: Implications for active vision. Amsterdam: IOS Publ., pp. 3–68.

Lilly, R., Cummings, J. L., Benson, D. F., Frankel, M. (1983) The human Klüver-Bucy syndrome. Neurology, vol. 33, no. 9, pp. 1141–1145. https://doi.org/10.1212/wnl.33.9.1141

Logunova, E. V., Shelepin, Yu. E. (2015) Study of the role of spatial-frequency filtering of images when evaluating the age and interpreting the emotional expression of faces. Journal of Optical Technology, vol. 82, no. 10, pp. 694–699. https://doi.org/10.1364/JOT.82.000694

Malashin, R. O. (2021) Sparsely ensembled convolutional neural network classifiers via reinforcement learning. In: ICMLT 2021: 2021 6th International Conference on Machine Learning Technologies (April 23–25, 2021). New York: Association of Computing Machinery Publ., pp. 102–110. https://doi.org/10.1145/3468891.3468906

Markov, N. T., Ercsey-Ravasz, M., van Essen, D. C. et al. (2013) Cortical high-density counterstream architectures. Science, vol. 342, no. 6158, article 1238406. https://doi.org/10.1126/science.1238406

Merigan, W. H., Byrne, C. E., Maunsel, J. H. R. (1991) Does primate motion perception depend on the magnocellular pathway? The Journal of Neuroscience, vol. 11, no. 11, pp. 3422–3429. https://doi.org/10.1523/JNEUROSCI.11-11-03422.1991

Merigan, W., Pasternak, T. (2003) Lesions in primate visual cortex leading to deficitis of visual perception. In: M. Fachle, M. Grenlee (eds.). The Neuropsychology of Vision. Oxford: Oxford University Press, pp. 121–162. https://doi.org/10.1093/acprof:oso/9780198505822.003.0005

Mishkin, M., Ungerleider, L. G., Macko, K. A. (1983) Object vision and spatial vision: two cortical pathways. Trends in Neurosciences, vol. 6, pp. 414–417. https://doi.org/10.1016/0166-2236(83)90190-X

Nam, Y., Sato, T., Uchida, G. et al. (2021) View tuned and view invariant face encoding in IT cortex is explained by selected natural image fragments. Scientific Reports; Nature Portfolio, vol. 11, article 7827. https://doi.org/10.1038/s41598-021-86842-7

Panakhova, E. N. (2002) Appearance of Kluver-Bucy Syndrome and Alzheimer Disease—disturbance of intrastructural (amygdala-vision) and interamygdala interrelation? In: The 3rd Forum of European Neuroscience (FENS Forum). Paris: [s. n.], p. 221.

Ponomarev, V. A., Kropotov, Yu. D. (2021) Bayesian parallel factor analysis for studies of event-related potentials. Neuroscience and Behavioral Physiology, vol. 51, pp. 882–892. https://doi.org/10.1007/s11055-021-01147-6

Regan, D., Silver, R., Murray, T. J. (1977) Visual acuity and contrast sensitivity in multiple sclerosis-hidden visual loss: An auxiliary diagnostic test. Brain, vol. 100, no. 3, pp. 563–579. https://doi.org/10.1093/brain/100.3.563

Reimer, C. B., Strobach, T., Schubert, T. (2016) Concurrent deployment of visual attention and response selection bottleneck in a dual-task: Electrophysiological and behavioural evidence. The Quarterly Journal of Experimental Psychology, vol. 70, no. 12, pp. 2460–2477. https://doi.org/10.1080/17470218.2016.1245348

Rolls, E. T. (2014) Emotion and decision-making explained. Oxford: Oxford Scholarship Online Publ., 704 p. https://doi.org/10.1093/acprof:oso/9780199659890.001.0001

Sani, I., Stemmann, H., Caron, B. et al. (2021). The human endogenous attentional control network includes a ventro-temporal cortical node. Nature Communications, vol. 12, no. 1, article 360. https://doi.org/10.1038/s41467-020-20583-5

Schober, H. (1956) Informations theorie in Optik und Fernsehen. Optik, vol. 13, pp. 350–364.

Sergeev, S. F., Khomyakov, A. V. (2021) Operator’s perception of groups of dynamic objects. Journal of Optical Technology, vol. 88, no. 6, pp. 337–342. https://doi.org/10.1364/JOT.88.000337

Shelepin, K. Yu., Pronin, S. V., Shelepin, Yu. E. (2015) Recognizing fragmented images and the appearance of “Insight”. Journal of Optical Technology, vol. 82, no. 10, pp. 700–706. https://doi.org/10.1364/JOT.82.000700

Sheth, B. R., Young, R. (2016) Two visual pathways in primates based on sampling of space: Exploitation and exploration of visual information. Frontiers in Integrative Neuroscience, vol. 10, article 37. https://doi.org/10.3389/fnint.2016.00037

Struss, D. T., Knight, R. T. (eds.). (2002) Principles of frontal lobe function. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195134971.001.0001

Tamietto, M., de Gelder, B. (2010) Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, vol. 11, no. 10, pp. 697–709. https://doi.org/10.1038/nrn2889

Tsotsos, J. K., Abid, O., Kotseruba, I., Solbach, M. D. (2021) On the control of attentional processes in vision. Cortex, vol. 137, no. 5, pp. 305–329. https://doi.org/10.1016/j.cortex.2021.01.001

Verghese, P., Pelli, D. G. (1992) The information capacity of visual attention. Vision Research, vol. 32, no. 5, pp. 983–995. https://doi.org/10.1016/0042-6989(92)90040-p

Viola, P., Jones, M. J. (2004) Robust real-time face detection. International Journal of Computer Vision, vol. 57, pp. 137–154. https://doi.org/10.1023/B:VISI.0000013087.49260.fb

Vuilleumier, P., Driver, J. (2007) Modulation of visual processing by attention and emotion: Windows on causal interactions between human brain regions. Philosophical Transactions of the Royal Society B, vol. 362, no. 1481, pp. 837–855.

Wallace, J., Valdivia, A. A. (2020) A hybrid artificial intelligence, machine learning, and control algorithm integration framework for embedded systems using semantic web technology. In: 2020 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas: IEEE Publ., pp. 492–497. https://doi.org/10.1109/CSCI51800.2020.00089

Wang, Y., Lv, K., Huang, R. et al. (2020) Glance and focus: A dynamic approach to reducing spatial redundancy in image classification. In: 34th Conference on Neural Information Processing Systems (NeurIPS 2020). [Online]. Available at: https://arxiv.org/pdf/2010.05300.pdf (accessed 01.10.2021).

Weiskrantz, L. (2003) Unconscious perception: Blindsight. In: M. Fachle, M. Grenlee (eds.). The Neuropsychology of Vision. Oxford: Oxford University Press, pp. 283–306. https://doi.org/10.1093/acprof:oso/9780198505822.003.0009

Xu, X., Chen, O., Ruixin, Xu. (2019) The study of spatial frequency channels for human visual system. International Journal of Pattern Recognition and Artificial Intelligence, vol. 33, no. 6, article 1955007. https://doi.org/10.1142/S0218001419550073

Zhukova, O. V., Malakhova, E. Yu., Shelepin, Yu. E. (2019) La Gioconda and the indeterminacy of smile recognition by a person and by an artificial neural network. Journal of Optical Technology, vol. 86, no. 11, pp. 706–715. https://doi.org/10.1364/JOT.86.000706

REFERENCES

Ajina, S., Bridge, H. (2017) Blindsight and unconscious vision: What they teach us about the human visual system. The Neuroscientist, vol. 23, no. 5, pp. 529–541. https://doi.org/10.1177/1073858416673817 (In English)

Ajina, S., Pollard, M., Bridge, H. (2020) The superior colliculus and amygdala support evaluation of face trait in blindsight. Frontiers in Neurology, vol. 11, article 769. https://doi.org/10.3389/Fneur.2020.00769 (In English)

Anastasio, T. J. (2015) Computer modeling in neuroscience: From imperative to declarative programming. In: N. Martí-Oliet, P. C. Ölveczky, C. Talcott (eds.). Logic, rewriting, and concurrency. Essays dedicated to Jose Meseguer on the occasion of his 65th birthday. Berlin: Springer Publ, pp. 97–113. https://doi.org/10.1007/978-3-319-23165-5_4 (In English)

Bechara, A., Damasio, H., Damasio, A. R., Lee, G. P. (1999) Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, vol. 19, no. 13, pp. 5473–5481. https://doi.org/10.1523/JNEUROSCI.19-13-05473.1999 (In English)

Bernard, C. (1867) Svojstva zhivykh tkanej. Kurs obshchej fiziologii [Properties of living tissues. General physiology course]. Saint Petersburg: O. I. Bakst Publ., 299 p. (In Russian)

Bondarko, V. M., Danilova, M. V., Krasilnikov, N. N. et al. (1999) Prostranstvennoe zrenie [Spatial vision]. Saint Petersburg: Nauka Publ., 218 p. (In Russian)

Chistovich, L. A. (1950) Uslovnye kozhno-gal’vanicheskie reaktsii na neoshchushchaemye zvukovye razdrazheniya [Conditioned galvanic skin reactions to imperceptible sound stimuli]. Extended abstract of PhD dissertation (Biology). Leningrad, Pavlov Institute of Physiology, 8 p. (In Russian)

Dakin, S. C., Watt, R. J. (2009) Biological “bar codes” in human faces. Journal of Vision, vol. 9 (4), no. 2, pp. 1–10. https://doi.org/10.1167/9.4.2 (In English)

Das, J. M., Siddiqui W. (2020) Kluver Bucy Syndrome. In: StatPearls. [S. l.]: StatPearls Publ. [Online]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK544221 (accessed 18.11.2021). (In English)

Duke-Elder, S. (1962) System of ophthalmology. Vol. VII. The foundation of ophthalmology. The investigation of indirect vision: The visual fields. St. Louis: Mosby Publ., pp. 393–425. (In English)

Elshawi, R., Sakr, S., Talia, D., Trunfio, P. (2018) Big data systems meet machine learning challenges: Towards big data science as a service. Big Data Research, vol. 14, pp. 1–11. https://doi.org/10.1016/j.bdr.2018.04.004 (In English) Fahland, D., Lubke, D., Mendling, J. et al. (2009) Declarative versus imperative process modeling languages: The issue of understandability. In: T. Halpin, J. Krogstie, S. Nurcan et al. (eds.). Enterprise, Business-process and information systems modeling. BPMDS 2009, EMMSAD 2009. Lecture notes in business information processing. Vol. 29. Berlin; Heidelberg: Springer Publ., pp. 353–366. https://doi.org/10.1007/978-3-642-01862-6_29 (In English)

Farah, M. (1990) Visual Agnosia.: Disorders of object recognition and what they tell us about normal vision. Cambridge: MIT Press, 184 p. (In English)

Fredrikson, M. (1983) Reliability and validity of some specific fear questionnaires. Scandinavian Journal of Psychology, vol. 24, no. 4, pp. 331–334. https://doi.org/10.1111/j.1467-9450.1983.tb00507.x (In English)

Funahashi, S. (2017) Prefrontal contribution to decision-making under free-choice conditions. Frontiers in Neuroscience, vol. 11, article 431. https://doi.org/10.3389/fnins.2017.00431 (In English)

Gershuni, G. V. (1940) Elektrofiziologicheskij analiz deyatel’nosti slukhovoj sistemy [Electrophysiological analysis of the activity of the auditory system]. Fiziologicheskij zhurnal, vol. 29, no. 5, p. 369–379. (In Russian)

Glezer, V. D. (1993) Zrenie i myshlenie [Sight and thinking]. Leningrad: Nauka Publ., 284 p. (In Russian)

Glezer, V. D., Zuckerman, I. I. (1961) Informatsiya i zrenie [Information and vision]. Moscow; Leningrad: USSR Academy of Sciences Publ., 183 p. (In Russian)

Goodale, M., Milner, D. (2004) Sight unseen. An exploration of conscious and unconscious vision. Oxford: Oxford University Press, 232 p. https://doi.org/10.1093/acprof:oso/9780199596966.001.0001 (In English)

Halbertsma, H. N., Bridge, H., Carvalho, J. et al. (2021) Visual field reconstruction in hemianopia using fMRI based mapping techniques. Frontiers in Human Neuroscience, vol. 15, article 713114. https://doi.org/10.3389/fnhum.2021.713114 (In English)

Hansen, B. C., Johnson, A. P., Ellemberg, D. (2012) Different spatial frequency bands selectively signal for natural image statistics in the early visual system. Journal of Neurophysiology, vol. 108, no. 8, pp. 2160–2172. https://doi.org/10.1152/jn.00288.2012 (In English)

Hyvarinen, J., Shelepin, Yu. E. (1979) Distribution of visual and somatic functions in the parietal associative area 7 of the monkey. Brain Research, vol. 169, no. 3, pp. 561–564. https://doi.org/10.1016/0006-8993(79)90404-9 (In English)

Hurme, M., Koivisto, M., Revonsuo, A., Railo, H. (2019) V1 activity during feedforward and early feedback processing is necessary for both conscious and unconscious motion perception. Neuroimage, vol. 185, pp. 313–321. https://doi.org/10.1016/j.neuroimage.2018.10.058 (In English)

Kawamura, K., Naito, J. (1984) Corticocortical projections to the prefrontal cortex in the rhesus monkey investigated with horseradish peroxidase techniques. Neuroscience Research, vol. 1, no. 2, p. 89–103. https://doi.org/10.1016/ s0168-0102(84)80007-3 (In English)

Kharauzov, A. K., Shelepin, Yu. E., Tsvetkov, O. V. et al. (2020) Metody maskirovki ugrozhayushchikh izobrazhenij i elektrofiziologicheskie markery ikh neosoznannogo vospriyatiya [Methods of masking threatening images and electrophysiological markers of their unconscious perception]. Opticheskij zhurnal — Journal of Optical Technology, vol. 87, no. 10, pp. 69–80. https://doi.org/10.17586/1023-5086-2020-87-10-69-80 (In Russian)

Kharauzov, A. K., Vasiliev, P. P., Sokolov, A. V. et al. (2015) Vospriyatie izobrazhenij v zadachakh zritel’nogo poiska v usloviyakh dinamicheskoj pomekhi [Perception of images in visual search problems under dynamic interference]. Opticheskij zhurnal — Journal of Optical Technology, vol. 82, no. 5, pp. 42–55. (In Russian)

Klüver, H., Bucy, P. C. (1937) “Psychic blindness” and other symptoms following bilateral temporal lobectomy in rhesus monkeys. American Journal of Physiology, vol. 119, pp. 352–353. (In English)

Kordjamshidi, P., Roth, D., Kersting, K. (2019) Declarative learning-based programming as an interface to AI systems. [Online]. Available at: https://arxiv.org/pdf/1906.07809.pdf (accessed 18.11.2021). (In English)

Kozhevnikov, V. A. (1951) Elektroentsefalograficheskoe izuchenie obrazovaniya vremennykh svyazej na zvukovye razdrazhiteli u cheloveka [Electroencephalographic study of the formation of temporary connections to sound stimuli in humans]. Extended abstract of PhD dissertation (Biology). Leningrad, Institute of higher nervous activity, 12 p. (In Russian)

Kozhevnikov, V. A., Maruseva, A. M. (1949) Elektroentsefalograficheskoe izuchenie obrazovaniya vremennykh svyazej na neoshchushchaemye razdrazheniya u cheloveka [Electroencephalographic study of the formation of temporary connections to imperceptible stimuli in humans]. Izvestia Akademii Nauk SSSR. Seriya biologicheskaya, vol. 5, pp. 560–569. (In Russian)

Krasil’nikov, N. N., Shelepin, Yu. E., Krasil’nikova, O. I. (1999) Primenenie printsipov optimal’nogo nablyudatelya pri modelirovanii zritel’noj sistemy cheloveka [Application of the principles of the optimal observer in modeling the human visual system]. Opticheskij zhurnal — Jornal of Optical Technology, vol. 66, no. 9, pp. 17–24. (In Russian)

Kropotov, J. D, Etlinger, S. C. (1999) Selection of actions in the basal ganglia- thalamocortical circuits: Review and model. International Journal of Psychophysiology, vol. 31, no. 3, pp. 197–217. https://doi.org/10.1016/s0167-8760(98)00051-8 (In English)

Kulikowski, J. J. (2003) Neural basis of fundamental filters in vision. In: G. T. Buracas, O. Ruksenas, G. M. Boynton, T. D. Albright (eds.). Modulation of neuronal responses: Implications for active vision. Amsterdam: IOS Publ., pp. 3–68. (In English)

Lilly, R., Cummings, J. L., Benson, D. F., Frankel, M. (1983) The human Klüver-Bucy syndrome. Neurology, vol. 33, no. 9, pp. 1141–1145. https://doi.org/10.1212/wnl.33.9.1141 (In English)

Logunova, E. V., Pronin, S. V., Shelepin, Yu. E. (2014) Modelirovanie raboty prostranstvenno-chastotnykh fil’trov pri vospriyatii slozhnykh dinamicheskikh stsen [Modelling the operation of spatial-frequency filters during the perception of complex dynamic scenes]. Opticheskij zhurnal — Journal of Optical Technology, vol. 81, no. 11, pp. 62–68. (In Russian)

Logunova, E. V., Shelepin, Yu. E. (2015) Study of the role of spatial-frequency filtering of images when evaluating the age and interpreting the emotional expression of faces. Journal of Optical Technology, vol. 82, no. 10, pp. 694–699. https://doi.org/10.1364/JOT.82.000694 (In English)

Malashin, R. O. (2021) Sparsely ensembled convolutional neural network classifiers via reinforcement learning. In: ICMLT 2021: 2021 6th International Conference on Machine Learning Technologies (April 23–25, 2021). New York: Association of Computing Machinery Publ., pp. 102–110. https://doi.org/10.1145/3468891.3468906 (In English)

Markov, N. T., Ercsey-Ravasz, M., van Essen, D. C. et al. (2013) Cortical high-density counterstream architectures. Science, vol. 342, no. 6158, article 1238406. https://doi.org/10.1126/science.1238406 (In English)

Merigan, W. H., Byrne, C. E., Maunsel, J. H. R. (1991) Does primate motion perception depend on the magnocellular pathway? The Journal of Neuroscience, vol. 11, no. 11, pp. 3422–3429. https://doi.org/10.1523/JNEUROSCI.11-11-03422.1991 (In English)

Merigan, W., Pasternak, T. (2003) Lesions in primate visual cortex leading to deficitis of visual perception. In: M. Fachle, M. Grenlee (eds.). The Neuropsychology of Vision. Oxford: Oxford University Press, pp. 121–162. https://doi.org/10.1093/acprof:oso/9780198505822.003.0005 (In English)

Mishkin, M., Ungerleider, L. G., Macko, K. A. (1983) Object vision and spatial vision: two cortical pathways. Trends in Neurosciences, vol. 6, pp. 414–417. https://doi.org/10.1016/0166-2236(83)90190-X (In English)

Murygin, K. V. (2003) Optimizatsiya gaborovskikh vejvlet-preobrazovanij dlya zadachi raspoznavaniya cheloveka po izobrazheniyu litsa [Optimization of Gabor wavelet transforms for the problem of human recognition from a face image]. Iskusstvennyj intellekt, no. 4, pp. 223–229. (In Russian)

Nam, Y., Sato, T., Uchida, G. et al. (2021) View tuned and view invariant face encoding in IT cortex is explained by selected natural image fragments. Scientific Reports; Nature Portfolio, vol. 11, article 7827. https://doi.org/10.1038/s41598-021-86842-7 (In English)

Panakhova, E. N. (2002) Appearance of Kluver-Bucy Syndrome and Alzheimer Disease—disturbance of intrastructural (amygdala-vision) and interamygdala interrelation? In: The 3rd Forum of European Neuroscience (FENS Forum). Paris: [s. n.], p. 221. (In English)

Podvigin, N. F., Makarov, F. N., Shelepin, Yu. E. (1986) Elementy strukturno-funktsional’noj organizatsii zrite’no-glazodvigatel’noj sistemy [Elements of the structural and functional organization of the visual-oculomotor system]. Leningrad: Nauka Publ., 252 p. (In Russian)

Ponomarev, V. A., Kropotov, Yu. D. (2021) Bayesian parallel factor analysis for studies of event-related potentials. Neuroscience and Behavioral Physiology, vol. 51, pp. 882–892. https://doi.org/10.1007/s11055-021-01147-6 (In English)

Regan, D., Silver, R., Murray, T. J. (1977) Visual acuity and contrast sensitivity in multiple sclerosis-hidden visual loss: An auxiliary diagnostic test. Brain, vol. 100, no. 3, pp. 563–579. https://doi.org/10.1093/brain/100.3.563 (In English)

Reimer, C. B., Strobach, T., Schubert, T. (2016) Concurrent deployment of visual attention and response selection bottleneck in a dual-task: Electrophysiological and behavioural evidence. The Quarterly Journal of Experimental Psychology, vol. 70, no. 12, pp. 2460–2477. https://doi.org/10.1080/17470218.2016.1245348 (In English)

Rolls, E. T. (2014) Emotion and decision-making explained. Oxford: Oxford Scholarship Online Publ., 704 p. https://doi.org/10.1093/acprof:oso/9780199659890.001.0001 (In English)

Sani, I., Stemmann, H., Caron, B. et al. (2021). The human endogenous attentional control network includes a ventro-temporal cortical node. Nature Communications, vol. 12, no. 1, article 360. https://doi.org/10.1038/ s41467-020-20583-5 (In English)

Schober, H. (1956) Informations theorie in Optik und Fernsehen [Information theory in optics and television]. Optik, vol. 13, pp. 350–364. (In German)

Sergeev, S. F., Khomyakov, A. V. (2021) Operator’s perception of groups of dynamic objects. Journal of Optical Technology, vol. 88, no. 6, pp. 337–342. https://doi.org/10.1364/JOT.88.000337 (In English)

Shelepin, Yu. E. (2017) Vvedenie v nejroikoniku [Introduction to neuroiconics]. Saint Petersburg.: Troitskij Most Publ., 352 p. (In Russian)

Shelepin, Yu. E., Kharauzov, A. K., Zhukova, O. V. et al. (2020) Maskirovka i obnaruzhenie skrytykh signalov v dinamicheskikh izobrazheniyakh [Masking and detection of hidden signals in dynamic images]. Opticheskij zhurnal — Journal of Optical Technology, vol. 87, no. 10, pp. 89–102. https://doi.org/10.17586/1023-5086-2020- 87-10-89-102 (In Russian)

Shelepin, Yu. E., Kolesnikova, L. N., Levkovich, Yu. I. (1985) Vizokontrastometriya: Izmerenie prostranstvennykh peredatochnykh funktsij zritel’noj sistemy [Visocontrastometry: Measuring the spatial transfer functions of the visual system]. Leningrad: Nauka Publ., 104 p. (In Russian)

Shelepin, K. Yu., Pronin, S. V., Shelepin, Yu. E. (2015) Recognizing fragmented images and the appearance of “Insight”. Journal of Optical Technology, vol. 82, no. 10, pp. 700–706. https://doi.org/10.1364/JOT.82.000700 (In English)

Shelepin, Yu. E., Rudoj, I. S., Davydov, A. T. et al. (1997) Metod narkopsikhoterapii bol’nykh alkogolizmom [The method of drug psychotherapy for patients with alcoholism]. In: Novye podkhody k diagnostike i lecheniyu alkogolizma [New approaches to the diagnosis and treatment of alcoholism]. Saint Petersburg: The S. M. Kirov Military Medical Academy Publ., pp. 51–53. (In Russian)

Sheth, B. R., Young, R. (2016) Two visual pathways in primates based on sampling of space: Exploitation and exploration of visual information. Frontiers in Integrative Neuroscience, vol. 10, article 37. https://doi.org/10.3389/ fnint.2016.00037 (In English)

Skuratova, K. A., Shelepin, E. Yu., Yarovaya, N. P. (2021) Opticheskij poisk i zritel’nyj navyk [Optical search and visual skill]. Opticheskij zhurnal — Journal of Optical Technology, vol. 88, no. 12, pp. 28–35. https://www.doi.org/10.17586/1023-5086-2021-88-12-28-35 (In Russian)

Struss, D. T., Knight, R. T. (eds.). (2002) Principles of frontal lobe function. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195134971.001.0001 (In English)

Tamietto, M., de Gelder, B. (2010) Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, vol. 11, no. 10, pp. 697–709. https://doi.org/10.1038/nrn2889 (In English)

Tsotsos, J. K., Abid, O., Kotseruba, I., Solbach, M. D. (2021) On the control of attentional processes in vision. Cortex, vol. 137, no. 5, pp. 305–329. https://doi.org/10.1016/j.cortex.2021.01.001 (In English)

Tsvetkov, E. A., Krasnoshchekova, E. I. (2020) Amigdalyarnyj kompleks. Fiziologiya emotsij i pamyati [Amygdala complex. Physiology of emotions and memory]. Saint Petersburg: Saint Petersburg State University Publ., 200 p. (In Russian)

Vakhrameeva, O. A., Kharauzov, A. K., Pronin, S. V. et al. (2016) Zritel’nyj prajming pri raspoznavanii melkikh izobrazhenij v stsene, soderzhashchej ob’ekty raznogo razmera [Visual priming and reception of small pictures in a with multiscale objects]. Fiziologiya cheloveka — Human Physiology, vol. 42, no. 5, pp. 39–48. https://doi.org/10.7868/S0131164616050180 (In Russian)

Verghese, P., Pelli, D. G. (1992) The information capacity of visual attention. Vision Research, vol. 32, no. 5, pp. 983–995. https://doi.org/10.1016/0042-6989(92)90040-p (In English)

Viola, P., Jones, M. J. (2004) Robust real-time face detection. International Journal of Computer Vision, vol. 57, pp. 137–154. https://doi.org/10.1023/B:VISI.0000013087.49260.fb (In English)

Vuilleumier, P., Driver, J. (2007) Modulation of visual processing by attention and emotion: Windows on causal interactions between human brain regions. Philosophical Transactions of the Royal Society B, vol. 362, no. 1481, pp. 837–855. (In English)

Wallace, J., Valdivia, A. A. (2020) A hybrid artificial intelligence, machine learning, and control algorithm integration framework for embedded systems using semantic web technology. In: 2020 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas: IEEE Publ., pp. 492–497. https://doi.org/10.1109/CSCI51800.2020.00089 (In English)

Wang, Y., Lv, K., Huang, R. et al. (2020) Glance and focus: A dynamic approach to reducing spatial redundancy in image classification. In: 34th Conference on Neural Information Processing Systems (NeurIPS 2020). [Online]. Available at: https://arxiv.org/pdf/2010.05300.pdf (accessed 01.10.2021). (In English)

Weiskrantz, L. (2003) Unconscious perception: Blindsight. In: M. Fachle, M. Grenlee (eds.). The Neuropsychology of Vision. Oxford: Oxford University Press, pp. 283–306. https://doi.org/10.1093/acprof:oso/9780198505822.003.0009 (In English)

Xu, X., Chen, O., Ruixin, Xu. (2019) The study of spatial frequency channels for human visual system. International Journal of Pattern Recognition and Artificial Intelligence, vol. 33, no. 6, article 1955007. https://doi.org/10.1142/ S0218001419550073 (In English)

Zhukova, O. V., Malakhova, E. Yu., Shelepin, Yu. E. (2019) La Gioconda and the indeterminacy of smile recognition by a person and by an artificial neural network. Journal of Optical Technology, vol. 86, no. 11, pp. 706–715. https://doi.org/10.1364/JOT.86.000706 (In English)

Загрузки

Опубликован

16.03.2022

Выпуск

Раздел

Обзоры