Особенности механизмов NO-опосредованной дилатации пиальных артерий на воздействие ацетилхолина у стареющих крыс
DOI:
https://doi.org/10.33910/2687-1270-2022-3-3-367-377Ключевые слова:
старение, эндотелиальная дисфункция, пиальные сосуды, NO-опосредованная дилатация, синтазы оксида азотаАннотация
Изучали возрастные изменения роли NO, синтезируемого различными формами синтаз оксида азота (NOS), и экзогенного L-аргинина в ацетилхолин-опосредованной дилатации сосудов головного мозга у крыс. С использованием метода прижизненной микрофотосъемки проведена сравнительная оценка реакций пиальных артерий различных диаметров на воздействие ацетилхолин хлорида (АХ, 10–7 М, 8 мин) в отсутствии и на фоне блокады NOS и воздействия экзогенного L-аргинина (0,25 мМ, 30 мин) у крыс Sprague-Dawley в возрасте 4 и 18 месяцев. Блокаду NOS производили путем применения неселективного ингибитора NOS (L-NAME, 10–3 М, 12 мин) и ингибитора индуцибельной NOS (аминогуанидин, 1 мМ, 10 мин). Оценивали изменение числа и степени дилатации артерий, измеряя ширину потока эритроцитов в трех отдельных группах артерий: мелких (диаметр менее 20 мкм), средних (20–40 мкм) и крупных (более 40 мкм). Установлено, что к 18 месяцам у крыс снижается роль NO, синтезируемого конститутивными формами NOS, в осуществлении АХ-опосредованных эндотелий-зависимых дилататорных реакций пиальных артерий мелких и средних диаметров и усиливается роль данного механизма в дилатации крупных пиальных артерий. Одновременно повышается роль индуцибельной NOS в дилатации артерий всех исследованных диаметров. Эти процессы сопровождаются снижением биодоступности экзогенного L-аргинина для NOS.
Библиографические ссылки
Arvanitakis, Z., Capuano, A. W., Leurgans, S. E. et al. (2016) Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: A cross-sectional study. The Lancet. Neurology, vol. 15, no. 9, pp. 934–943. https://doi.org/10.1016/S1474-4422(16)30029-1 (In English)
Berkowitz, D. E., White, R., Li, D. et al. (2003) Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation, vol. 108, no. 16, pp. 2000–2006. https://doi.org/10.1161/01.CIR.0000092948.04444.C7 (In English)
Bierhansl, L., Conradi, L.-C., Treps, L. et al. (2017) Central role of metabolism in endothelial cell function and vascular disease. Physiology, vol. 32, no. 2, pp. 126–140. https://doi.org/10.1152/physiol.00031.2016 (In English)
Cau, S. B., Carneiro, F. S., Tostes, R. C. (2012) Differential modulation of nitric oxide synthases in aging: Therapeutic opportunities. Frontiers in Physiology, vol. 3, article 218. https://doi.org/10.3389/fphys.2012.00218 (In English)
Cernadas, M. R., de Miguel, L. S., García-Durán, M. et al. (1998) Expression of constitutive and inducible nitric oxide synthases in the vascular wall of young and aging rats. Circulation Research, vol. 83, no. 3, pp. 279–286. https://doi.org/10.1161/01.res.83.3.279 (In English)
Cinelli, M. A., Do, H. T., Miley, G. P., Silverman, R. B. (2020) Inducible nitric oxide synthase: Regulation, structure, and inhibition. Medicinal Research Reviews, vol. 40, no. 1, pp. 158–189. https://doi.org/10.1002/med.21599 (In English)
Clemente, G. S., van Waarde, A., Antunes, I. F. et al. (2020) Arginase as a potential biomarker of disease progression: A molecular imaging perspective. International Journal of Molecular Sciences, vol. 21, no. 15, article 5291. https://doi.org/10.3390/ijms21155291. (In English)
Cuadrado-Godia, E., Dwivedi, P., Sharma, S. et al. (2018) Cerebral small vessel disease: A review focusing on pathophysiology, biomarkers, and machine learning strategies. Journal of Stroke, vol. 20, no. 3, pp. 302–320. https://doi.org/10.5853/jos.2017.02922 (In English)
De Silva, T. M., Faraci, F. M. (2020) Contributions of aging to cerebral small vessel disease. Annual Review of Physiology, vol. 82, pp. 275–295. https://doi.org/10.1146/annurev-physiol-021119-034338 (In English)
Fujii, N., Meade, R. D., Alexander, L. M. et al. (2016) iNOS-dependent sweating and eNOS-dependent cutaneous vasodilation are evident in younger adults, but are diminished in older adults exercising in the heat. Journal of Applied Physiology, vol. 120, no. 3, pp. 318–327. https://doi.org/10.1152/japplphysiol.00714.2015 (In English)
Gambardella, J., Khondkar, W., Morelli, M. B. et al. (2020) Arginine and endothelial function. Biomedicines, vol. 8, no. 8, article 277. https://doi.org/10.3390/biomedicines8080277 (In English)
Katusic, Z. S. (2007) Mechanisms of endothelial dysfunction induced by aging: Role of arginase I. Circulation Research, vol. 101, no. 7, pp. 640–641. https://doi.org/10.1161/CIRCRESAHA.107.162701 (In English)
Luiking, Y. C., Ten Have, G. A. M., Wolfe, R. R., Deutz, N. E. P. (2012) Arginine de novo and nitric oxide production in disease states. American Journal of Physiology Endocrinology and Metabolism, vol. 303, no. 10, pp. E1177–E1189. https://doi.org/10.1152/ajpendo.00284.2012 (In English)
Mazlan, M., Hamezah, H. S., Taridi, N. M. et al. (2017) Effects of aging and tocotrienol-rich fraction supplementation on brain arginine metabolism in rats. Oxidative Medicine and Cellular Longevity, vol. 2017, article 6019796. https://doi.org/10.1155/2017/6019796 (In English)
Mistry, S. K., Greenfeld, Z., Morris, S. M. Jr., Baylis, C. (2002) The ‘intestinal-renal’ arginine biosynthetic axis in the aging rat. Mechanisms of Ageing and Development, vol. 123, no. 8, pp. 1159–1165. https://doi.org/10.1016/s0047-6374(02)00003-9 (In English)
Morris, S. M. Jr. (2007) Arginine metabolism: Boundaries of our knowledge. The Journal of Nutrition, vol. 137, no. 6, pp. 1602S–1609S. https://doi.org/10.1093/jn/137.6.1602S (In English)
Olchanheski, L. R. Jr., Sordi, R., Oliveira, J. G. et al. (2018) The role of potassium channels in the endothelial dysfunction induced by periodontitis. Journal of Applied Oral Science, vol. 26, article e20180048. https://doi.org/10.1590/1678-7757-2018-0048 (In English)
Pozhilova, E. V., Novikov, V. E. (2015) Sintaza oksida azota i endogennyj oksid azota v fiziologii i patologii kletki [Physiological and pathological value of cellular synthase of nitrogen oxide and endogenous nitrogen oxide]. Vestnik Smolenskoj gosudarstvennoj meditsinskoj akademii — Vestnik of the Smolensk State Medical Academy, vol. 14, no. 4, pp. 35–41. (In Russian)
Santhanam, L., Christianson, D. W., Nyhan, D., Berkowitz, D. E. (2008) Arginase and vascular aging. Journal of Applied Physiology, vol. 105, no. 5, pp. 1632–1642. https://doi.org/10.1152/japplphysiol.90627.2008 (In English)
Shin, S., Mohan, S., Fung, H.-L. (2011) Intracellular L-arginine concentration does not determine NO production in endothelial cells: Implications on the “L-arginine paradox”. Biochemical and Biophysical Research Communications, vol. 414, no. 4, pp. 660–663. https://doi.org/10.1016/j.bbrc.2011.09.112 (In English)
Sindler, A. L., Delp, M. D., Reyes, R. et al. (2009) Effects of ageing and exercise training on eNOS uncoupling in skeletal muscle resistance arterioles. The Journal of Physiology, vol. 587, no. 15, pp. 3885–3897. https://doi.org/10.1113/jphysiol.2009.172221 (In English)
Tang, W. H. W., Wang, Z., Cho, L. et al. (2009) Diminished global arginine bioavailability and increased arginine catabolism as metabolic profile of increased cardiovascular risk. Journal of the American College of Cardiology, vol. 53, no. 22, pp. 2061–2067. https://doi.org/10.1016/j.jacc.2009.02.036 (In English)
Toth, P., Tarantini, S., Csiszar, A., Ungvari, Z. (2017) Functional vascular contributions to cognitive impairment and dementia: Mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. American Journal of Physiology. Heart and Circulatory Physiology, vol. 312, no. 1, pp. H1–H20. https://doi.org/10.1152/ajpheart.00581.2016 (In English)
Ungvari, Z., Tarantini, S., Donato, A. J. et al. (2018) Mechanisms of vascular aging. Circulation Research, vol. 123, no. 7, pp. 849–867. https://doi.org/10.1161/CIRCRESAHA.118.311378 (In English)
Xiong, Y., Fru, M. F., Yu, Y. et al. (2014) Long term exposure to L-arginine Accelerates endothelial cell senescence through arginase-II and S6K1 signaling. Aging, vol. 6, no. 5, pp. 369–379. https://doi.org/10.18632/aging.100663 (In English)
Xu, H., Li, S., Liu, Y.-S. (2022) Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduction and Targeted Therapy, vol. 7, no. 1, article 231. https://doi.org/10.1038/s41392-022-01082-z (In English)
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2022 Оксана Петровна Горшкова
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Автор предоставляет материалы на условиях публичной оферты и лицензии CC BY-NC 4.0. Эта лицензия позволяет неограниченному кругу лиц копировать и распространять материал на любом носителе и в любом формате, но с обязательным указанием авторства и только в некоммерческих целях. После публикации все статьи находятся в открытом доступе.
Авторы сохраняют авторские права на статью и могут использовать материалы опубликованной статьи при подготовке других публикаций, а также пользоваться печатными или электронными копиями статьи в научных, образовательных и иных целях. Право на номер журнала как составное произведение принадлежит издателю.