Роль вкусовых рецепторов T1R в регуляции потребления и метаболизма углеводов у млекопитающих

Авторы

DOI:

https://doi.org/10.33910/2687-1270-2022-3-3-270-285

Ключевые слова:

ожирение, вкусовая чувствительность, Tas1-гены, рецепторы T1R, бета-клетки, инсулин, поджелудочная железа, метаболизм

Аннотация

Вкусовые рецепторы первого типа T1R, кодируемые генами Tas1, играют ключевую роль в восприятии вкуса сладкого и аминокислот у позвоночных животных. Существенные различия в пищевых предпочтениях, описанные у разных групп животных, могут быть связаны с прекращением экспрессии какого-либо из генов, кодирующего эти белки. У млекопитающих выявлены многочисленные полиморфизмы этих генов, обнаруженные у человека и мышей, которые приводят к изменению степени предпочтения и уровня потребления сладких веществ и влияют на чувствительность рецептора. Это обусловливает актуальность исследования данной системы в свете современной ситуации с заболеваемостью диабетом и ожирением. Хотя T1R изначально были выявлены во вкусовых клетках, последующие работы существенно расширили представления об их экспрессии, что предполагает их функциональную роль за пределами ротовой полости. Их экспрессия обнаруживается в структурах эндокринной ткани и пищеварительной системы (энтероэндокринные и всасывающие клетки кишечника, α и β-клетки островковой ткани поджелудочной железы), адипоцитах, остеоцитах, печени, в отделах ЦНС, участвующих в регуляции метаболизма и питания, и этот список постоянно расширяется. В то же время проблема метаболических эффектов гена пока остается малоизученной. В настоящем обзоре обобщены новейшие данные, свидетельствующие, что T1R рецепторы не только оказывают влияние на выбор пищи, но и задействованы в управлении гормональными реакциями, которые регулируют поступление и метаболизм углеводов в тканях организма, а также накопление жира.

Библиографические ссылки

Antinucci, M., Risso, D. (2017) A matter of taste: Lineage-specific loss of function of taste receptor genes in Vertebrates. Frontiers in Molecular Biosciences, vol. 4, article 81. https://doi.org/10.3389/fmolb.2017.00081 (In English)

Bachmanov, A. A., Bosak, N. P., Floriano, W. B. et al. (2011) Genetics of sweet taste preferences. Flavour and Fragrance Journal, vol. 26, no. 4, pp. 286–294. https://doi.org/10.1002/ffj.2074 (In English)

Bachmanov, A. A., Bosak, N. P., Lin, C. et al. (2014) Genetics of taste receptors. Current Pharmaceutical Design, vol. 20, no. 16, pp. 2669–2683. https://doi.org/10.2174/13816128113199990566 (In English)

Bachmanov, A. A., Li, X., Reed, D. R. et al. (2001a) Positional cloning of the mouse saccharin preference (Sac) locus. Chemical Senses, vol. 26, no. 7, pp. 925–933. https://doi.org/10.1093/chemse/26.7.925 (In English)

Bachmanov, A. A., Reed, D. R., Ninomiya, Y. et al. (1997) Sucrose consumption in mice: Major influence of two genetic loci affecting peripheral sensory responses. Mammalian Genome, vol. 8, no. 8, pp. 545–548. https://doi.org/10.1007/s003359900500 (In English)

Bachmanov, A. A., Tordoff, M. G., Beauchamp, G. K. (2001b) Sweetener preference of C57BL/6ByJ and 129P3/J mice. Chemical Senses, vol. 26, no. 7, pp. 905–913. https://doi.org/10.1093/chemse/26.7.905 (In English)

Balcazar, N., Sathyamurthy, A., Elghazi, L. et al. (2009) mTORC1 Activation regulates β-cell mass and proliferation by modulation of cyclin D2 synthesis and stability. Journal of Biological Chemistry, vol. 284, no. 12, pp. 7832–7842. https://doi.org/10.1074/jbc.M807458200 (In English)

Bartoshuk, L. M., Duffy, V. B., Hayes, J. E. et al. (2006) Psychophysics of sweet and fat perception in obesity: Problems, solutions and new perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 361, no. 1471, pp. 1137–1148. https://doi.org/10.1098/rstb.2006.1853 (In English)

Bizeau, M. E., Pagliassotti, M. J. (2005). Hepatic adaptations to sucrose and fructose. Metabolism, vol. 54, no. 9, pp. 1189–1201. https://doi.org/10.1016/j.metabol.2005.04.004 (In English)

Bremer, A. A., Stanhope, K. L., Graham, J. L. et al. (2011) Fructose-fed rhesus monkeys: A nonhuman primate model of insulin resistance, metabolic syndrome, and type 2 diabetes. Clinical and Translational Science, vol. 4, no. 4, pp. 243–252. https://doi.org/10.1111/j.1752-8062.2011.00298.x (In English)

Chandrashekar, J., Hoon, M. A., Ryba, N., et al. (2006) The receptors and cells for mammalian taste. Nature, vol. 444, pp. 288–294. https://doi.org/10.1038/nature05401 (In English)

Craig, T. J., Ashcroft, F. M., Proks, P. (2008) How ATP inhibits the open K(ATP) channel. Journal of General Physiology, vol. 132, no. 1, pp. 131–144. https://doi.org/10.1085/jgp.200709874 (In English)

Damak, S., Rong, M., Yasumatsu, K. et al. (2003) Detection of sweet and umami taste in the absence of taste receptor T1r3. Science, vol. 301, no. 5634, pp. 850–853. https://doi.org/10.1126/science.1087155 (In English)

Delay, E. R., Hernandez, N. P., Bromley, K., Margolskee, R. F. (2006) Sucrose and monosodium glutamate taste thresholds and discrimination ability of T1R3 knockout mice. Chemical Senses, vol. 31, no. 4, pp. 351–357. https://doi.org/10.1093/chemse/bjj039 (In English)

Dias, A. G., Eny, K. M., Cockburn, M. et al. (2015) Variation in the TAS1R2 gene, sweet taste perception and intake of sugars. Journal of Nutrigenetics and Nutrigenomics, vol. 8, no. 2, pp. 81–90. https://doi.org/10.1159/000430886 (In English)

Ding, L., Yin, Y., Han, L. et al. (2017) TSC1-mTOR signaling determines the differentiation of islet cells. Journal of Endocrinology, vol. 232, no. 1, pp. 59–70. https://doi.org/10.1530/JOE-16-0276 (In English)

Donaldson, L. F., Bennett, L., Baic, S., Melichar, J. K. (2009) Taste and weight: Is there a link? The American Journal of Clinical Nutrition, vol. 90, no. 3, pp. 800S–803S. https://doi.org/10.3945/ajcn.2009.27462Q (In English)

Drucker, D. J. (2013) Incretin action in the pancreas: Potential promise, possible perils, and pathological pitfalls. Diabetes, vol. 62, no. 10, pp. 3316–3323. https://doi.org/10.2337/db13-0822 (In English)

Duca, F. A., Covasa, M. (2012) Current and emerging concepts on the role of peripheral signals in the control of food intake and development of obesity. British Journal of Nutrition, vol. 108, no. 5, pp. 778–793. https://doi.org/10.1017/S0007114512000529 (In English)

Eny, K. M., Wolever, T. M., Corey, P. N., El-Sohemy, A. (2010) Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations. American Journal of Clinical Nutrition, vol. 92, no. 6, pp. 1501–1510. https://doi.org/10.3945/ajcn.2010.29836 (In English)

Fioramonti, X., Lorsignol, A., Taupignon, A., Pénicaud, L. (2004) A new ATP-sensitive K+ channel-independent mechanism is involved in glucose-excited neurons of mouse arcuate nucleus. Diabetes, vol. 53, no. 11, pp. 2767–2775. https://doi.org/10.2337/diabetes.53.11.2767 (In English)

Fuller, J. L. (1974) Single-locus control of saccharin preference in mice. Journal of Heredity, vol. 65, no. 1, pp. 33–36. https://doi.org/10.1093/oxfordjournals.jhered.a108452 (In English)

Fushan, A. A, Simons, C. T, Slack, J. P. et al. (2009) Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose. Current Biology, vol. 19, no. 15, pp. 1288–1293. https://doi.org/10.1016/j.cub.2009.06.015 (In English)

Fushan, A. A., Simons, C. T., Slack, J. P., Drayna, D. (2010) Association between common variation in genes encoding sweet taste signaling components and human sucrose perception. Chemical Senses, vol. 35, no. 7, pp. 579–592. https://doi.org/10.1093/chemse/bjq063 (In English)

Garcia-Bailo, B., Toguri, C., Eny, M., El-Sohemy, A. (2009) Genetic variation in taste and its influence on food selection. OMICS: A Journal of Integrative Biology, vol. 13, no. 1, pp. 69–80. https://doi.org/10.1089/omi.2008.0031 (In English)

Gembal, M., Gilon, P, Henquin, J. C. (1992) Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse β-cells. The Journal of Clinical Investigation, vol. 89, no. 4, pp. 1288–1295. https://doi.org/10.1172/JCI115714 (In English)

Glendinning, J. I., Chyou, S., Lin, I. (2005) Initial licking responses of mice to sweeteners: Effects of Tas1r3 polymorphisms. Chemical Senses, vol. 30, pp. 601-614. https://doi.org/10.1093/chemse/bji054 (In English)

Glendinning, J. I., Gillman, J., Zamer, H. et al. (2012) The role of T1r3 and Trpm5 in carbohydrate-induced obesity in mice. Physiology and Behavior, vol. 107, no. 1, pp. 50–58. https://doi.org/10.1016/j.physbeh.2012.05.023 (In English)

Greenberg, D., McCaffery, J., Potack, J. Z. et al. (1999) Differential satiating effects of fats in the small intestine of obesity-resistant and obesity-prone rats. Physiology and Behavior, vol. 66, no. 4, pp. 621–626. https://doi.org/10.1016/s0031-9384(98)00336-9 (In English)

Hamano, K., Nakagawa, Y., Ohtsu, Y. et al. (2015) Lactisole inhibits the glucose-sensing receptor T1R3 expressed in mouse pancreatic β-cells. Journal of Endocrinology, vol. 226, no. 1, pp. 57–66. https://doi.org/10.1530/JOE-15-0102 (In English)

Herman, M. A., Kahn, B. B. (2006) Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. Journal of Clinical Investigation, vol. 116, no. 7, pp. 1767–1775. https://doi.org/10.1172/JCI29027 (In English)

Hiriart, M., Aguilar-Bryan, L. (2008) Channel regulation of glucose sensing in the pancreatic β–cell. American Journal of Physiology. Endocrinology and Metabolism, vol. 295, no. 6, pp. E1298–E1306. https://doi.org/10.1152/ajpendo.90493.2008 (In English)

Hubbard, K. B., Hepler, J. R. (2006) Cell signalling diversity of the Gqa family of heterotrimeric G proteins. Cellular Signalling, vol. 18, no. 2, pp. 135–150. https://doi.org/10.1016/j.cellsig.2005.08.004 (In English)

Inoue, M., Glendinning, J. I., Theodorides, M. L. et al. (2007) Allelic variation of the Tas1r3 taste receptor gene selectively affects taste responses to sweeteners: Evidence from 129.B6-Tas1r3 congenic mice. Physiological Genomics, vol. 32, no. 1, pp. 82–94. https://doi.org/10.1152/physiolgenomics.00161.2007 (In English)

Inoue, M., Reed, D. R., Li, X. et al. (2004) Allelic variation of the Tas1r3 taste receptor gene selectively affects behavioral and neural taste responses to sweeteners in the F2 hybrids between C57BL/6ByJ and 129P3/J mice. Journal of Neuroscience, vol. 24, no. 9, pp. 2296–2303. https://doi.org/10.1523/JNEUROSCI.4439-03.2004 (In English)

Ishimaru, Y. (2009) Molecular mechanisms of taste transduction in vertebrates. Odontology, vol. 97, pp. 1–7. https://doi.org/10.1007/s10266-008-0095-y (In English)

Jang, H.-J., Kokrashvili, Z., Theodorakis, M. J. et al. (2007) Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proceedings of the National Academy of Sciences, vol. 104, no. 38, pp. 15069–15074. https://doi.org/10.1073/pnas.0706890104 (In English)

Jiang, P., Josue, J., Li, X. et al. (2012) Major taste loss in carnivorous mammals. Proceedings of the National Academy of Sciences, vol. 103, no. 13, pp. 4956–4961. https://doi.org/10.1073/pnas.1118360109 (In English)

Kim, U.-K., Wooding, S., Riaz, N. et al. (2006) Variation in the human TAS1R taste receptor genes. Chemical Senses, vol. 31, no. 7, pp. 599–611. https://doi.org/10.1093/chemse/bjj065 (In English)

Kojima, I., Nakagawa, Y. (2011) The role of the sweet taste receptor in enteroendocrine cells and pancreatic β-cells. Diabetes and Metabolism Journal, vol. 35, no. 5, pp. 451–457. https://doi.org/10.4093/dmj.2011.35.5.451 (In English)

Kojima, I., Nakagawa, Y., Hamano, K. et al. (2015) Glucose-sensing receptor T1R3: A new signaling receptor activated by glucose in pancreatic β-cells. Biological and Pharmaceutical Bulletin, vol. 38, no. 5, pp. 674–679. https://doi.org/10.1248/bpb.b14-00895 (In English)

Kojima, I., Nakagawa, Y., Ohtsu, Y.et al. (2014) Sweet taste-sensing receptors expressed in pancreatic ß-cells: Sweet molecules act as biased agonists. Endocrinology and Metabolism, vol. 29, no. 1, pp. 12–19. http://dx.doi.org/10.3803/EnM.2014.29.1.12 (In English)

Kokrashvili, Z., Mosinger, B., Margolskee, R. F. (2009a) T1R3 and α-gustducin in gut regulate secretion of glucagon-like peptide-1. Annals of the New York Academy of Sciences, vol. 1170, no. 1, pp. 91–94. https://doi.org/10.1111/j.1749-6632.2009.04485.x (In English)

Kokrashvili, Z., Mosinger, B., Margolskee, R. F. (2009b) Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. The American Journal of Clinical Nutrition, vol. 90, no. 3, pp. 822S–825S. https://doi.org/10.3945/ajcn.2009.27462T (In English)

Kokrashvili, Z., Yee, K. K., Ilegems, E. et al. (2014) Endocrine taste cells. British Journal of Nutrition, vol. 111, no. 1, pp. S23–S29. https://doi.org/10.1017/s0007114513002262 (In English)

Kyriazis, G. A., Smith, K. R., Tyrberg, B. et al. (2014) Sweet taste receptors regulate basal Insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice. Endocrinology, vol. 155, no. 6, pp. 2112–2121. https://doi.org/10.1210/en.2013-2015 (In English)

Kyriazis, G. A., Soundarapandian, M. M., Tyrberg, B. (2012) Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proceedings of the National Academy of Sciences, vol. 109, no. 8, pp. E524–E532. https://doi.org/10.1073/pnas.1115183109 (In English)

Laffitte, A., Neiers, F., Briand, L. (2014) Functional roles of the sweet taste receptor in oral and extraoral tissues. Current Opinion in Clinical Nutrition and Metabolic Care, vol. 17, no. 4, pp. 379–385. https://doi.org/10.1097/MCO.0000000000000058 (In English)

Larsson, M. H., Håkansson, P., Jansen, F. P. et al. (2015) Ablation of TRPM5 in mice results in reduced body weight gain and improved glucose tolerance and protects from excessive consumption of sweet palatable food when fed high caloric diets. PLoS ONE, vol. 10, no. 9, article e0138373. https://doi.org/10.1371/journal.pone.0138373 (In English)

Li, X., Inoue, M., Reed, D. R., Huque, T. et al. (2001) High-resolution genetic mapping of the saccharin preference locus (Sac) and the putative sweet taste receptor (T1R1) gene (Gpr70) to mouse distal chromosome 4. Mammalian Genome, vol. 12, no. 1, pp. 13–16. https://doi.org/10.1007/s003350010236 (In English)

Liu, S., Manson, J. E. (2001) Dietary carbohydrates, physical inactivity, obesity, and the ‘metabolic syndrome’ as predictors of coronary heart disease. Current Opinion in Lipidology, vol. 12, no. 4, pp. 395-404. https://doi.org/10.1097/00041433-200108000-00005 (In English)

Mace, O. J., Affleck, J., Patel, N., Kellett, G. L. (2007) Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. The Journal of Physiology, vol. 582, no. 1, pp. 379–392. https://doi.org/10.1113/jphysiol.2007.130906 (In English)

Maedler, K., Schumann, D. M., Schulthess, F. et al. (2006) Aging correlates with decreased β-cell proliferative capacity and enhanced sensitivity to apoptosis: A potential role for Fas and pancreatic duodenal homeobox-1. Diabetes, vol. 55, no. 9, pp. 2455–2462. https://doi.org/10.2337/db05-1586 (In English)

Margolskee, R. F. (2002) Molecular mechanisms of bitter and sweet taste transduction. Journal of Biological Chemistry, vol. 277, no. 1, pp. 1–4. https://doi.org/10.1074/jbc.R100054200 (In English)

Margolskee, R. F., Dyer, J., Kokrashvili, Z. et al. (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proceedings of the National Academy of Sciences, vol. 104, no. 38, pp. 15075–15080. https://doi.org/10.1073/pnas.0706678104 (In English)

Martinez, F. J., Rizza, R. A., Romero, J. C. (1994) High-fructose feeding elicits insulin resistance, hyperinsulinism, and hypertension in normal mongrel dogs. Hypertension, vol. 23, no. 4, pp. 456–463. https://doi.org/10.1161/01.hyp.23.4.456 (In English)

Maruyama, Y., Pereira, E., Margolskee, R. F. et al. (2006) Umami responses in mouse taste cells indicate more than one receptor. The Journal of Neuroscience, vol. 26, no. 8, pp. 2227–2234. https://doi.org/10.1523/JNEUROSCI.4329-05.2006 (In English)

Masubuchi, Y., Nakagawa, Y., Ma, J. et al. (2013) A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells. PLoS ONE, vol. 8, no. 1, article e54500. https://doi.org/10.1371/journal.pone.0054500 (In English)

Masubuchi, Y., Nakagawa, Y., Medina, J. et al. (2017) Correction: T1R3 homomeric sweet taste receptor regulates adipogenesis through Gαs-mediated microtubules disassembly and Rho activation in 3T3-L1 cells. PLoS ONE, vol. 12, no. 7, article e0181293. https://doi.org/10.1371/journal.pone.0181293 (In English)

Mattes, R. D., Popkin, B. M. (2009) Nonnutritive sweetener consumption in humans: Effects on appetite and food intake and their putative mechanisms. The American Journal of Clinical Nutrition, vol. 89, no. 1, pp. 1–14. https://doi.org/10.3945/ajcn.2008.26792 (In English)

McCaughey, S. A. (2008) The taste of sugars. Neuroscience and Biobehavioral Reviews, vol. 32, no. 5, pp. 1024–1043. https://doi.org/10.1016/j.neubiorev.2008.04.002 (In English)

Medina, A., Nakagawa, Y., Ma, J. et al. (2014) Expression of the glucose-sensing receptor T1R3 in pancreatic islet: Changes in the expression levels in various nutritional and metabolic states. Endocrine Journal, vol. 61, no. 8, pp. 797–805. https://doi.org/10.1507/endocrj.ej14-0221 (In English)

Meijer, A. J., Lorin, S., Blommaart, E. F., Codogno, P. (2015) Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids, vol. 47, pp. 2037–2063. https://doi.org/10.1007/s00726-014-1765-4 (In English)

Miki, T., Liss, B., Minami, K. et al. (2001) ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nature Neuroscience, vol. 4, no. 5, pp. 507–512. https://doi.org/10.1038/87455 (In English)

Mori, H., Inoki, K., Opland, D. et al. (2009) Critical roles for the TSC-mTOR pathway in β-cell function. American Journal of Physiology. Endocrinology and Metabolism, vol. 297, no. 5, pp. E1013–E1022. https://doi.org/10.1152/ajpendo.00262.2009 (In English)

Murovets, V. O., Bachmanov, A. A., Travnikov, S. V. et al. (2014) Uchastie retseptornogo belka TAS1R3 v regulyatsii obmena glyukozy u myshej pri raznykh urovnyakh glikemii [Involvement of Tas1R3 receptor protein in control of the metabolism of glucose at different levels of glycemia in mice]. Zhurnal Evolyutsionnoj Biokhimii i Fiziologii, vol. 50, no. 4, pp. 296–304. (In Russian)

Murovets, V. O., Bachmanov, A. A., Zolotarev, V. A. (2015) Impaired glucose metabolism in mice lacking the Tas1r3 taste receptor gene. PLoS ONE, vol. 10, no. 6, article e0130997. https://doi.org/10.1371/journal.pone.0130997 (In English)

Murovets, V. O., Lukina, E. A., Sozontov, E. A. et al. (2020) Allelic variation of the Tas1r3 taste receptor gene affects sweet taste responsiveness and metabolism of glucose in F1 mouse hybrids. PLoS ONE, vol. 15, no. 7, article e0235913. https://doi.org/10.1371/journal.pone.0235913 (In English)

Murovets, V. O., Lukina, E. A., Zolotarev, V. A. (2018a) The effect of Tas1r3 gene polymorphism on preference and consumption of sucrose and low-calorie sweeteners in interstrain hybrid mice of the first filial generation. Journal of Evolutionary Biochemistry and Physiology, vol. 54, no. 3, pp. 221–233. https://doi.org/10.1134/S0022093018030079 (In English)

Murovets, V. O., Sozontov, E. A., Andreeva, Yu. V. et al. (2016) Vliyanie retseptornogo belka T1R3 na glyukoneogenez i zhirovoj obmen u myshej [Effect of T1R3 receptor protein deletion on gluconeogenesis and lipid metabolism in mice]. Rossiiskij fiziologicheskij zhurnal im. I. M. Sechenova, vol. 102, no. 6, pp. 668–679. (In Russian)

Murovets, V. O., Sozontov, E. A., Andreeva, Yu. V. et al. (2018b) Vliyanie polimorfizma gena Tas1r3 na metabolizm glyukozy i lipidov u mezhlinejnykh gibridov myshej [Effects of Tas1r3 gene polymorphisms on glucose and lipid metabolism in between strain hybrids of mice]. Rossiiskij fiziologicheskij zhurnal im. I. M. Sechenova, vol. 104, no. 3, pp. 338–350. (In Russian)

Murovets, V. O., Sozontov, E. A., Zachepilo, T. G. (2019) Vliyanie vkusovogo retseptornogo belka T1R3 na razvitie ostrovkovoj tkani podzheludochnoj zhelezy myshi [Effect of taste receptor protein T1R3 on the development of islet tissue of the murine pancreas]. Doklady Akademii Nauk, vol. 484, no. 1, pp. 117–120. https://doi.org/10.31857/S0869-56524841117-120 (In Russian)

Nakagawa, Y., Nagasawa, M., Mogami, H. et al. (2013) Multimodal function of the sweet taste receptor expressed in pancreatic β-cells: Generation of diverse patterns of intracellular signals by sweet agonists. Endocrine Journal, vol. 60, no. 10, pp. 1191–1206. https://doi.org/10.1507/endocrj.ej13-0282 (In English)

Nakagawa, Y., Nagasawa, M., Yamada, S. et al. (2009) Sweet taste receptor expressed in pancreatic β-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS ONE, vol. 4, no. 4, article e5106. https://doi.org/10.1371/journal.pone.0005106 (In English)

Nelson, G., Hoon, M. A., Chandrashekar, J. et al. (2001) Mammalian sweet taste receptors. Cell, vol. 106, no. 3, pp. 381–390. https://doi.org/10.1016/s0092-8674(01)00451-2 (In English)

Nie, Y., Vigues, S., Hobbs, J. R. et al. (2005) Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli. Current Biology, vol. 15, no. 21, pp. 1948–1952. https://doi.org/10.1016/j.cub.2005.09.037 (In English)

Ohkuri, T., Yasumatsu, K., Horio, N. et al. (2009) Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, vol. 296, no. 4, pp. R960–R971. https://doi.org/10.1152/ajpregu.91018.2008 (In English)

Oya, M., Suzuki, H., Watanabe, Y. et al. (2011) Amino acid taste receptor regulates insulin secretion in pancreatic β-cell line MIN6 cells. Genes to Cells, vol. 16, no. 5, pp. 608–616. https://doi.org/10.1111/j.1365-2443.2011.01509.x (In English)

Reed, D. R., Li, S., Li, X. et al. (2004) Polymorphisms in the taste receptor gene (Tas1r3) region are associated with saccharin preference in 30 mouse strains. The Journal of Neuroscience, vol. 24, no. 4, pp. 938–946. https://doi.org/10.1523/JNEUROSCI.1374-03.2004 (In English)

Rehfeld, J. F. (2018) The origin and understanding of the incretin concept. Frontiers in Endocrinology, vol. 9, article 387. https://doi.org/10.3389/fendo.2018.00387 (In English)

Reimann, F., Habib, A. M., Tolhurst, G. et al. (2008) Glucose sensing in L cells: A primary cell study. Cell Metabolism, vol. 8, no. 6., pp. 532–539. https://doi.org/10.1016/j.cmet.2008.11.002 (In English)

Ren, X., Zhou, L., Terwilliger, R. et al. (2009) Sweet taste signaling functions as a hypothalamic glucose sensor. Frontiers in Integrative Neuroscience, vol. 3, article 12. https://doi.org/10.3389/neuro.07.012.2009 (In English)

Riera, C. E., Vogel, H., Simon, S. A. et al. (2008). The capsaicin receptor participates in artificial sweetener aversion. Biochemical and Biophysical Research Communications, vol. 376, no. 4, pp. 653–657. https://doi.org/10.1016/j.bbrc.2008.09.029 (In English)

Riera, C. E., Vogel, H., Simon, S. A. et al. (2009) Sensory attributes of complex tasting divalent salts are mediated by TRPM5 and TRPV1 channels. The Journal of Neuroscience, vol. 29, no. 8, pp. 2654–2662. https://doi.org/10.1523/JNEUROSCI.4694-08.2009 (In English)

Robino, A., Bevilacqua, L., Pirastu, N. et al. (2015) Polymorphisms in sweet taste genes (TAS1R2 and GLUT2), sweet liking, and dental caries prevalence in an adult Italian population. Genes & Nutrition, vol. 10, no. 5, article 34. https://doi.org/10.1007/s12263-015-0485-z (In English)

Roper, S. D. (2007) Signal transduction and information processing in mammalian taste buds. Pflügers Archiv— European Journal of Physiology, vol. 454, no. 5, pp. 759–776. https://doi.org/10.1007/s00424-007-0247-x (In English)

Rozengurt, N., Wu, S. V., Chen, M. C. et al. (2006) Colocalization of the α-subunit of gustducin with PYY and GLP-1 in L cells of human colon. American Journal of Physiology. Gastrointestinal and Liver Physiology, vol. 291, no. 5, pp. G792–G802. https://doi.org/10.1152/ajpgi.00074.2006 (In English)

Sainz, E., Cavenagh, M. M., LopezJimenez, N. D. et al. (2007) The G-protein coupling properties of the human sweet and amino acid taste receptors. Developmental Neurobiology, vol. 67, no. 7, pp. 948–959. https://doi.org/10.1002/dneu.20403 (In English)

Sampey, B. P., Vanhoose, A. M., Winfield, H. M. et al. (2011) Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: Comparison to high-fat diet. Obesity, vol. 19, no. 6, pp. 1109–1117. https://doi.org/10.1038/oby.2011.18 (In English)

Schuit, F. C., Huypens, P., Heimberg H. et al. (2001) Glucose sensing in pancreatic β-cells: A model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes, vol. 50, no. 1., pp. 1–11. https://doi.org/10.2337/diabetes.50.1.1 (In English)

Sclafani, A., Ackroff, K. (2012) Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. American Journal of Physiology. Regulatory, Integrative and Comparative, vol. 302, no. 10, pp. R1119–R1133. https://doi.org/10.1152/ajpregu.00038.2012 (In English)

Sclafani, A., Glass, D. S., Margolskee, R. F., Glendinning, J. I. (2010) Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice. American Journal of Physiology. Regulatory, Integrative and Comparative, vol. 299, no. 6, pp. R1643–R1650. https://doi.org/10.1152/ajpregu.00495.2010 (In English)

Shindo, Y., Miura, H., Carninci, P. et al. (2008) Gα14 is a candidate mediator of sweet/umami signal transduction in the posterior region of the mouse tongue. Biochemical and Biophysical Research Communications, vol. 376, no. 3, pp. 504–508. https://doi.org/10.1016/j.bbrc.2008.09.035 (In English)

Sigoillot, M., Brockhoff, A., Meyerhof, W., Briand, L. (2012) Sweet-taste-suppressing compounds: Current knowledge and perspectives of application. Applied Microbiology and Biotechnology, vol. 96, no. 3, pp. 619–630. https://doi.org/10.1007/s00253-012-4387-3 (In English)

Simon, B. R., Parlee, S. D., Learman, B. S. et al. (2013) Artificial sweeteners stimulate adipogenesis and suppress lipolysis independently of sweet taste receptors. Journal of Biological Chemistry, vol. 288, no. 45, pp. 32475–32489. https://doi.org/10.1074/jbc.M113.514034 (In English)

Simon, B. R., Learman, B. S., Parlee, S. D. et al. (2014) Sweet taste receptor deficient mice have decreased adiposity and increased bone mass. PLoS ONE, vol. 9, no. 1, article e86454. https://doi.org/10.1371/journal.pone.0086454 (In English)

Sternini, C., Anselmi, L., Rozengurt, E. (2008) Enteroendocrine cells: A site of ‘taste’ in gastrointestinal chemosensing. Current Opinion in Endocrinology, Diabetes and Obesity, vol. 15, n. 1, pp. 73–78. https://doi.org/10.1097/MED.0b013e3282f43a73 (In English)

Steinert, R. E., Gerspach, A. C., Gutmann, H. et al. (2011) The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Clinical Nutrition, vol. 30, no. 4, pp. 524–532. https://doi.org/10.1016/j.clnu.2011.01.007 (In English)

Straub, S. G., Sharp, G. W. (2002) Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes/ Metabolism Research and Reviews, vol. 18, no. 6, pp. 451–463. https://doi.org/10.1002/dmrr.329 (In English)

Sutherland, K., Young, R. L., Cooper, N. J. et al. (2007) Phenotypic characterization of taste cells of the mouse small intestine. American Journal of Physiology. Gastrointestinal and Liver Physiology, vol. 292, no. 5, pp. G1420–G1428. https://doi.org/10.1152/ajpgi.00504.2006 (In English)

Swithers, S. E. (2013) Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends in Endocrinology and Metabolism, vol. 24, no. 9, pp. 431–441. https://doi.org/10.1016/j.tem.2013.05.005 (In English)

Swithers, S. E., Martin, A. A., Davidson, T. L. (2010) High-intensity sweeteners and energy balance. Physiology and Behavior, vol. 100, no. 1 pp. 55–62. https://doi.org/10.1016/j.physbeh.2009.12.021 (In English)

Szoke, E., Shrayyef, M. Z., Messing, S. et al. (2008) Effect of aging on glucose homeostasis: Accelerated deterioration of β-cell function in individuals with impaired glucose tolerance. Diabetes Care, vol. 31, no. 3, pp. 539–543. https://doi.org/10.2337/dc07-1443 (In English)

Tappy, L. (2018) Fructose-containing caloric sweeteners as a cause of obesity and metabolic disorders. Journal of Experimental Biology, vol. 221, no. 1, article jeb164202. https://doi.org/10.1242/jeb.164202 (In English)

Toda, Y., Nakagita, T., Hayakawa, T. et al. (2013) Two distinct determinants of ligand specificity in T1R1/T1R3 (the umami taste receptor). Journal of Biological Chemistry, vol. 288, no. 52, pp. 36863–36877. https://doi.org/10.1074/jbc.M113.494443 (In English)

Tordoff, M. G., Alleva, A. M. (1990) Oral stimulation with aspartame increases hunger. Physiology and Behavior, vol. 47, no. 3, pp. 555–559. https://doi.org/10.1016/0031-9384(90)90126-o (In English)

Tordoff, M. G., Friedman, M. I. (1989) Drinking saccharin increases food intake and preference-I. Comparison with other drinks. Appetite, vol. 12, no. 1, pp. 1–10. https://doi.org/10.1016/0195-6663(89)90064-0 (In English)

Treesukosol, Y., Smith, K. R., Spector, A. C. (2011) The functional role of the T1R family of receptors in sweet taste and feeding. Physiology and Behavior, vol. 105, no. 1, pp. 14–26. https://doi.org/10.1016/j.physbeh.2011.02.030 (In English)

Von Molitor, E., Riedel, K., Krohn, M. et al. (2021) Sweet taste is complex: Signaling cascades and circuits involved in sweet sensation. Frontiers in Human Neuroscience, vol. 15, article 667709. https://doi.org/10.3389/fnhum.2021.667709 (In English)

Wang, S. Y., Chi, M. M.-Y., Li, L. et al. (2003) Studies with GIP/Ins cells indicate secretion by gut K cells is KATP channel independent. American Journal of Physiology. Endocrinology and Metabolism, vol. 284, no. 5, pp. E988–E1000. https://doi.org/10.1152/ajpendo.00398.2002 (In English)

Wauson, E. M., Guerra, M. L., Dyachok, J. et al. (2015) Differential regulation of ERK1/2 and mTORC1 through T1R1/T1R3 in MIN6 cells. Molecular Endocrinology, vol. 29, no. 8, pp. 1114–1122. https://doi.org/10.1210/ME.2014-1181 (In English)

Wauson, E. M., Zaganjor, E., Lee, A-Y. et al. (2012) The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy. Molecular Cell, vol. 47, no. 6, pp. 851–862. https://doi.org/10.1016/j.molcel.2012.08.001 (In English)

Yee, K. K., Sukumaran, S. K., Kotha, R. et al. (2011) Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proceedings of the National Academy of Sciences, vol. 108, no. 13, pp. 5431–5436. https://doi.org/10.1073/pnas.1100495108 (In English)

Zhang, Y., Hoon, M. A., Chandrashekar, J. et al. (2003) Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell, vol. 112, no. 3, pp. 293–301. https://doi.org/10.1016/s0092-8674(03)00071-0 (In English)

Zhao, G. Q., Zhang, Y., Hoon, M. A. et al. (2003) The receptors for mammalian sweet and umami taste. Cell, vol. 115, no. 3, pp. 255–266. https://doi.org/10.1016/s0092-8674(03)00844-4 (In English)

Zhao, H., Li, J., Zhang, J. (2015) Molecular evidence for the loss of three basic tastes in penguins. Current Biology, vol. 25, no. 4, pp. R141–R142. https://doi.org/10.1016/j.cub.2015.01.026 (In English)

Zhou, Y., Ren, J., Song, T. et al. (2016) Methionine regulates mTORC1 via the T1R1/T1R3-PLCβ-Ca2+-ERK1/2 signal transduction process in C2C12 cells. International Journal of Molecular Sciences, vol. 17, no. 10, article 1684. https://doi.org/10.3390/ijms17101684 (In English)

Загрузки

Опубликован

30.11.2022

Выпуск

Раздел

Обзоры