Стимулирующее влияние коротких пептидов на клеточную пролиферацию в органотипической культуре тканей

Авторы

  • Наталья Иосифовна Чалисова Институт физиологии им. И. П. Павлова РАН https://orcid.org/0000-0002-2371-0043
  • Полина Николаевна Иванова Институт физиологии им. И. П. Павлова РАН https://orcid.org/0000-0001-7112-0673
  • Екатерина Сергеевна Егозова Российский государственный педагогический университет им. А. И. Герцена https://orcid.org/0000-0002-0055-3778
  • Екатерина Александровна Никитина Институт физиологии им. И. П. Павлова РАН; Российский государственный педагогический университет им. А. И. Герцена https://orcid.org/0000-0003-1897-8392

DOI:

https://doi.org/10.33910/2687-1270-2023-4-2-225-234

Ключевые слова:

пролиферация, короткие пептиды, органотипическая культура тканей, кора головного мозга, селезенка, печень

Аннотация

Актуальной проблемой современной физиологии и медицины является выявление биологически активных молекул, влияющих на клеточные процессы пролиферации и апоптоза. В Санкт-Петербургском институте биорегуляции и геронтологии разработана технология выделения ряда полипептидных комплексов из различных органов и тканей телят, оказывающих стимулирующее влияние в культуре разных тканей организма на клеточную пролиферацию. В составе полипептидных комплексов содержатся короткие пептиды, имеющие сходную с полипептидами биологическую активность. Целью настоящего исследования было выявление действия коротких пептидов на клеточную пролиферацию в органотипической культуре тканей коры головного мозга, селезенки, печени молодых (3-месячных) и старых (18-месячных) крыс. При исследовании влияния в эффективных концентрациях трипептидов Glu-Asp-Arg, Glu-Asp-Pro, Glu-Asp-Leu и дипептидов Asp-Ser, Asp-Leu, Asp-Ala, Asp-Gly, Asp-Arg, Ala-Gly установлено, что эти пептиды статистически достоверно (p < 0,05) cтимулируют клеточную пролиферацию в эксплантатах коры головного мозга, печени, селезенки, как молодых, так и старых крыс. Полученные данные о коротких пептидах, стимулирующих клеточную пролиферацию в культивируемых тканях коры головного мозга, печени, селезенки молодых и старых организмов, создают базу для целенаправленной разработки новых лекарственных препаратов, том числе геропротекторов.

Библиографические ссылки

ЛИТЕРАТУРА

Иванова, П. Н., Заломаева, Е. С., Сурма, С. В. и др. (2021) Влияние ослабленного магнитного поля Земли на органотипическую культуру тканей различного генеза. Молекулярная медицина, т. 19, № 4, с. 47–51. https://doi.org/10.29296/24999490-2021-04-08

Козлов, К. Л., Болотов, И. И., Линькова, Н. С. и др. (2016) Молекулярные аспекты действия вазопротекторного пептида KED при атеросклерозе и рестенозе. Успехи геронтологии, т. 29, № 4, с. 646–650.

Концевая, Е. А., Линькова, Н. С., Чалисова, Н. И. и др. (2012) Влияние аминокислот на экспрессию сигнальных молекул в органотипической культуре селезенки. Клеточные технологии в биологии и медицине, № 2, с. 102–105.

Менджерицкий, А. М., Карантыш, Г. В., Абрамчук, В. А., Рыжак, Г. А. (2012) Влияние короткого пептида на нейродегенеративные процессы у крыс, перенесших пренатальную гипоксию. Нейрохимия, т. 29, № 3, с. 229–234.

Трофимова, А. В., Трофимова, С. В. (2015) 15-летний опыт применения молекулярно-генетического исследования в клинической практике. Врач, № 6, с. 66–68.

Хавинсон, В. Х. (2020) Лекарственные пептидные препараты: прошлое, настоящее, будущее. Клиническая медицина, т. 98, № 3, с. 165–177. https://doi.org/10.30629/0023-2149-2020-98-3-165-177

Хавинсон, В. Х., Кузник, Б. И., Рыжак, Г. А. (2013) Пептидные биорегуляторы — новый класс геропротекторов. Сообщение 2. Результаты клинических исследований. Успехи геронтологии, т. 26, № 1, с. 20–37.

Хавинсон, В. Х., Рывкин, А., Трофимова, С. В. и др. (2019) Персонализированная профилактика возрастной патологии как одно из условий оздоровления населения России. Врач, т. 7, с. 18–22. https://doi.org/10.29296/25877305-2019-07-03

Хавинсон, В. Х., Чалисова, Н. И., Линькова, Н. С. и др. (2015) Зависимость тканеспецифического действия пептидов от количества аминокислот, входящих в их состав. Фундаментальные исследования, № 2, с. 497–503.

Чалисова, Н. И., Концевая, Е. А., Войцеховская, М. А., Комашня, А. В. (2011) Регуляторное влияние кодируемых аминокислот на основные клеточные процессы у молодых и старых животных. Успехи геронтологии, т. 24, № 2, с. 189–197.

Чалисова, Н. И., Никитина, Е. А., Александрова, М. Л., Золотоверхая, Е. А. (2021) Влияние кодируемых L-аминокислот на органотипическую культуру тканей различного генеза. Интегративная физиология, т. 2, № 2, с. 196–204. https://doi.org/10.33910/2687-1270-2021-2-2-196-204

Aftabuddin, Md., Kundu, S. (2007) Hydrophobic, hydrophilic, and charged amino acid networks within protein. Biophysical Journal, vol. 93, no. 1, pp. 225–231. https://doi.org/10.1529/biophysj.106.098004

Chalisova, N. I., Ivanova, P. N., Zalomaeva, E. S. et al. (2019) Effect of tryptophan and kynurenine on cell proliferation in tissue culture of the cerebral cortex in young and old rats. Advances in Gerontology, vol. 9, no. 2, pp. 186–189. https://doi.org/10.1134/S2079057019020073

Coëffier, M., Claeyssens, S., Bensifi, M. et al. (2011) Influence of leucine on protein metabolism, phosphokinase expression, and cell proliferation in human duodenum 1, 2, 3, 4. The American Journal of Clinical Nutrition, vol. 93, no. 6, pp. 1255–1262. https://doi.org/10.3945/ajcn.111.013649

Correia, B., Sousa, M. I., Branco, A. F. et al. (2022) Leucine and arginine availability modulate mouse embryonic stem cell proliferation and metabolism. International Journal of Molecular Sciences, vol. 23, no. 22, article 14286. https://doi.org/10.3390/ijms232214286

Crowther, R. R., Schmidt, S. M., Lange, S. M. et al. (2022) Cutting edge: L-Arginine transfer from antigen-presenting cells sustains CD4+ T cell viability and proliferation. The Journal of Immunology, vol. 208, no. 4, pp. 793–798. https://doi.org/10.4049/jimmunol.2100652

Dai, J.-M., Yu, M.-X., Shen, Z.-Y. et al. (2015) Leucine promotes proliferation and differentiation of primary preterm rat satellite cells in part through mTORC1 signaling pathway. Nutrients, vol. 7, no. 5, pp. 3387–3400. https://doi.org/10.3390/nu7053387

Ding, Z., Ericksen, R. E., Escande-Beillard, N. et al. (2020) Metabolic pathway analyses identify proline biosynthesis pathway as a promoter of liver tumorigenesis. Journal of Hepatology, vol. 72, no. 4, pp. 725–735. https://doi.org/10.1016/j.jhep.2019.10.026

Fedoreyeva, L. I., Kireev, I. I., Khavinson, V. Kh., Vanyushin, B. F. (2011) Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA. Biochemistry, vol. 76, no. 11, pp. 1210–1219. https://doi.org/10.1134/S0006297911110022

García, S., López, E., López-Colomé, A. M. (2008) Glutamate accelerates RPE cell proliferation through ERK1/2 activation via distinct receptor-specific mechanisms. Journal of Cellular Biochemistry, vol. 104, no. 2, pp. 377–390. https://doi.org/10.1002/jcb.21633

Greene, J. M., Feugang, J. M., Pfeiffer, K. E. et al. (2013) L-arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells. Reproductive Biology and Endocrinology, vol. 11, article 15. https://doi.org/10.1186/1477-7827-11-15

Helenius, I. T., Madala, H. R., Yeh, J.-R. J. (2021) An Asp to strike out cancer? Therapeutic possibilities arising from aspartate’s emerging roles in cell proliferation and survival. Biomolecules, vol. 11, no. 11, article 1666. https://doi.org/10.3390/biom11111666

Katsamakas, S., Chatzisideri, T., Thysiadis, S., Sarli, V. (2017) RGD-mediated delivery of small-molecule drugs. Future Medicinal Chemistry, vol. 9, no. 6, pp. 579–604. https://doi.org/10.4155/fmc-2017-0008

Kobayashi, H., Motoyoshi, N., Itagaki, T. et al. (2015) Effect of the replacement of aspartic acid/glutamic acid residues with asparagine/glutamine residues in RNase He1 from Hericium erinaceus on inhibition of human leukemia cell line proliferation. Bioscience, Biotechnology, and Biochemistry, vol. 79, no. 2, pp. 211–217. https://doi.org/10.1080/09168451.2014.972327

Meléndez-Rodríguez, F., Urrutia, A. A., Lorendeau, D. et al. (2019) HIF1α suppresses tumor cell proliferation through inhibition of aspartate biosynthesis. Cell Reports, vol. 26, no. 9, pp. 2257–2265.e4. https://doi.org/10.1016/j.celrep.2019.01.106

Silveira-Dorta, G., Martín, V. S., Padrón, J. M. (2015) Synthesis and antiproliferative activity of glutamic acid-based dipeptides. Amino Acids, vol. 47, no. 8, pp. 1527–1532. https://doi.org/10.1007/s00726-015-1987-0

Wang, D., Kuang, Y., Wan, Z. et al. (2022) Aspartate alleviates colonic epithelial damage by regulating intestinal stem cell proliferation and differentiation via mitochondrial dynamics. Molecular Nutrition & Food Research, vol. 66, no. 24, article e2200168. https://doi.org/10.1002/mnfr.202200168

Wang, X., Chen, C., Zhou, G. et al. (2018) Sepia ink oligopeptide induces apoptosis of lung cancer cells via mitochondrial pathway. Cellular Physiology and Biochemistry, vol. 45, no. 5, pp. 2095–2106. https://doi.org/10.1159/000488046

Westbrook, R. L., Bridges, E., Roberts, J. et al. (2022) Proline synthesis through PYCR1 is required to support cancer cell proliferation and survival in oxygen-limiting conditions. Cell Reports, vol. 38, no. 5, article 110320. https://doi.org/10.1016/j.celrep.2022.110320

Wu, L., Hu, X., Xu, L., Zhang, G. (2020) Cod skin oligopeptide inhibits human gastric carcinoma cell growth by inducing apoptosis. Nutrition and Cancer, vol. 72, no. 2, pp. 218–225. https://doi.org/10.1080/01635581.2019.1622740

Yamaguchi, Y., Yamamoto, K., Sato, Y. et al. (2016) Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation. Biomedical Research, vol. 37, no. 2, pp. 153–159. https://doi.org/10.2220/biomedres.37.153

Zalomaeva, E. S., Ivanova, P. N., Chalisova, N. I. et al. (2020) Effects of weak static magnetic field and oligopeptides on cell proliferation and cognitive functions in different animal species. Technical Physics, vol. 65, no. 10, pp. 1585–1590. https://doi.org/10.1134/S1063784220100254

REFERENCES

Aftabuddin, Md., Kundu, S. (2007) Hydrophobic, hydrophilic, and charged amino acid networks within protein. Biophysical Journal, vol. 93, no. 1, pp. 225–231. https://doi.org/10.1529/biophysj.106.098004 (In English)

Chalisova, N. I., Ivanova, P. N., Zalomaeva, E. S. et al. (2019) Effect of tryptophan and kynurenine on cell proliferation in tissue culture of the cerebral cortex in young and old rats. Advances in Gerontology, vol. 9, no. 2, pp. 186–189. https://doi.org/10.1134/S2079057019020073 (In English)

Chalisova, N. I., Kontsevaya, E. A., Voytzekhovskaya, M. A., Komashnya, A. V. (2011) Regulyatornoe vliyanie kodiruemykh aminokislot na osnovnye kletochnye protsessy u molodykh i starykh zhivotnykh [The regulated effect of the coded amino acids on the basic cellular processes in young and old animals]. Uspekhi gerontologii — Advances in Gerontology, vol. 24, no. 2, pp. 189–197. (In Russian)

Chalisova, N. I., Nikitina, E. A., Alexandrova, M. L., Zolotoverkhaja, E. A. (2021) Vliyanie kodiruemykh L-aminokislot na organotipicheskuyu kulturu tkaney raslichnogo geneza [The effect of coded L-amino acids on the organotypic culture of tissues of different genesis]. Integrativnaya fiziologiya — Integrative Physiology, vol. 2, no. 2, pp. 196–204. https://doi.org/10.33910/2687-1270-2021-2-2-196-204 (In Russian)

Coëffier, M., Claeyssens, S., Bensifi, M. et al. (2011) Influence of leucine on protein metabolism, phosphokinase expression, and cell proliferation in human duodenum 1, 2, 3, 4. The American Journal of Clinical Nutrition, vol. 93, no. 6, pp. 1255–1262. https://doi.org/10.3945/ajcn.111.013649 (In English)

Correia, B., Sousa, M. I., Branco, A. F. et al. (2022) Leucine and arginine availability modulate mouse embryonic stem cell proliferation and metabolism. International Journal of Molecular Sciences, vol. 23, no. 22, article 14286. https://doi.org/10.3390/ijms232214286 (In English)

Crowther, R. R., Schmidt, S. M., Lange, S. M. et al. (2022) Cutting edge: L-Arginine transfer from antigen-presenting cells sustains CD4+ T cell viability and proliferation. The Journal of Immunology, vol. 208, no. 4, pp. 793–798. https://doi.org/10.4049/jimmunol.2100652 (In English)

Dai, J.-M., Yu, M.-X., Shen, Z.-Y. et al. (2015) Leucine promotes proliferation and differentiation of primary preterm rat satellite cells in part through mTORC1 signaling pathway. Nutrients, vol. 7, no. 5, pp. 3387–3400. https://doi.org/10.3390/nu7053387 (In English)

Ding, Z., Ericksen, R. E., Escande-Beillard, N. et al. (2020) Metabolic pathway analyses identify proline biosynthesis pathway as a promoter of liver tumorigenesis. Journal of Hepatology, vol. 72, no. 4, pp. 725–735. https://doi.org/10.1016/j.jhep.2019.10.026 (In English)

Fedoreyeva, L. I., Kireev, I. I., Khavinson, V. Kh., Vanyushin, B. F. (2011) Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA. Biochemistry, vol. 76, no. 11, pp. 1210–1219. https://doi.org/10.1134/S0006297911110022 (In English)

García, S., López, E., López-Colomé, A. M. (2008) Glutamate accelerates RPE cell proliferation through ERK1/2 activation via distinct receptor-specific mechanisms. Journal of Cellular Biochemistry, vol. 104, no. 2, pp. 377–390. https://doi.org/10.1002/jcb.21633 (In English)

Greene, J. M., Feugang, J. M., Pfeiffer, K. E. et al. (2013) L-arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells. Reproductive Biology and Endocrinology, vol. 11, article 15. https://doi.org/10.1186/1477-7827-11-15 (In English)

Helenius, I. T., Madala, H. R., Yeh, J.-R. J. (2021) An Asp to strike out cancer? Therapeutic possibilities arising from aspartate’s emerging roles in cell proliferation and survival. Biomolecules, vol. 11, no. 11, article 1666. https://doi.org/10.3390/biom11111666 (In English)

Ivanova, P. N., Zalomaeva, E. S., Surma, S. V. et al. (2021) Vliyanie oslablennogo magnitnogo polya Zemli na organotipicheskuyu kul’turu tkanej razlichnogo geneza [Impact of weakened geomagnetic field on the organotypic cell culture of various genesis]. Molekulyarnaya meditsina — Molecular Medicine, vol. 19, no. 4, pp. 47–51. https://doi.org/10.29296/24999490-2021-04-08 (In Russian)

Katsamakas, S., Chatzisideri, T., Thysiadis, S., Sarli, V. (2017) RGD-mediated delivery of small-molecule drugs. Future Medicinal Chemistry, vol. 9, no. 6, pp. 579–604. https://doi.org/10.4155/fmc-2017-0008 (In English)

Khavinson, V. Kh. (2020) Lekarstvennye peptidnye preparaty: proshloe, nastoyashchee, budushchee [Peptide medicines: Past, present, future]. Klinicheskaya meditsina — Clinical Medicine, vol. 98, no. 3, pp. 165–177. https://doi.org/10.30629/0023-2149-2020-98-3-165-177 (In Russian)

Khavinson, V. Kh., Chalisova, N. I., Linkova, N. S. et al. (2015) Zavisimost’ tkanespetsificheskogo dejstviya peptidov ot kolichestva aminokislot, vkhodyashchikh v ikh sostav [The dependence of tissue-specific peptides activity on the number of amino acids in the peptides]. Fundamental’nye issledovaniya — Fundamental Research, no. 2, pp. 497–503. (In Russian)

Khavinson, V. Kh., Kuznik, B. I., Ryzhak, G. A. (2013) Peptidnye bioregulyatory — novyj klass geroprotektorov. Soobshchenie 2. Rezul’taty klinicheskikh issledovanij [Peptide bioregulators: The new class of geroprotectors. Message 2. Clinical studies results]. Uspekhi gerontologii — Advances in Gerontology, vol. 26, no. 1, pp. 20–37. (In Russian)

Khavinson, V. Kh., Ryvkin, A., Trofimova, S. et al. (2019) Personalizirovannaya profilaktika vozrastnoj patologii kak odno iz uslovij ozdorovleniya naseleniya Rossii [Personalized prevention of age-related pathology as one of health improvement conditions in Russian population]. Vrach — The Doctor, vol. 7, pp. 18–22. https://doi.org/10.29296/25877305-2019-07-03 (In Russian)

Kobayashi, H., Motoyoshi, N., Itagaki, T. et al. (2015) Effect of the replacement of aspartic acid/glutamic acid residues with asparagine/glutamine residues in RNase He1 from Hericium erinaceus on inhibition of human leukemia cell line proliferation. Bioscience, Biotechnology, and Biochemistry, vol. 79, no. 2, pp. 211–217. https://doi.org/10.1080/09168451.2014.972327 (In English)

Kontsevaya, E. A., Linkova, N. S., Chalisova, N. I. et al. (2012) Vliyanie aminokislot na ekspressiyu signal’nykh molekul v organotipicheskoj kul’ture selezenki [Effect of amino acids on the expression of signaling molecules in organotypic culture of the spleen]. Kletochnyye tekhnologii v biologii i meditsine, no. 2, pp. 102–105. (In Russian)

Kozlov, K. L., Bolotov, I. I., Linkova, N. S. et al. (2016) Molekulyarnye aspekty dejstviya vasoprotektornogo peptida KED pri ateroskleroze i restenoze [Molecular aspects of vasoprotective peptide KED activity during atherosclerosis and restenosis]. Uspekhi gerontologii — Advances in Gerontology, vol. 29, no. 4, pp. 646–650. (In Russian)

Meléndez-Rodríguez, F., Urrutia, A. A., Lorendeau, D. et al. (2019) HIF1α suppresses tumor cell proliferation through inhibition of aspartate biosynthesis. Cell Reports, vol. 26, no. 9, pp. 2257–2265.e4. https://doi.org/10.1016/j.celrep.2019.01.106 (In English)

Mendzheritskij, A. M., Karantysh, G. V., Abramchuk, V. A., Ryzhak, G. A. (2012) Vliyanie korotkogo peptida na nejrodegenerativnye protsessy u krys, perenesshikh prenatal’nuyu gipoksiyu [Effect of short peptide on neurodegenerative processes in rats undergoing prenatal hypoxia]. Nejrokhimiya, vol. 29, no. 3, pp. 229–234. (In Russian)

Silveira-Dorta, G., Martín, V. S., Padrón, J. M. (2015) Synthesis and antiproliferative activity of glutamic acid-based dipeptides. Amino Acids, vol. 47, no. 8, pp. 1527–1532. https://doi.org/10.1007/s00726-015-1987-0 (In English)

Trofimova, A. V., Trofimova, S. V. (2015) 15-letnij opyt primeneniya molekulyarno-geneticheskogo issledovaniya v klinicheskoj praktike [15-years experience with molecular genetic examination used in clinical practice]. Vrach — The Doctor, no. 6, pp. 66–68. (In Russian)

Wang, D., Kuang, Y., Wan, Z. et al. (2022) Aspartate alleviates colonic epithelial damage by regulating intestinal stem cell proliferation and differentiation via mitochondrial dynamics. Molecular Nutrition & Food Research, vol. 66, no. 24, article e2200168. https://doi.org/10.1002/mnfr.202200168 (In English)

Wang, X., Chen, C., Zhou, G. et al. (2018) Sepia ink oligopeptide induces apoptosis of lung cancer cells via mitochondrial pathway. Cellular Physiology and Biochemistry, vol. 45, no. 5, pp. 2095–2106. https://doi.org/10.1159/000488046 (In English)

Westbrook, R. L., Bridges, E., Roberts, J. et al. (2022) Proline synthesis through PYCR1 is required to support cancer cell proliferation and survival in oxygen-limiting conditions. Cell Reports, vol. 38, no. 5, article 110320. https://doi.org/10.1016/j.celrep.2022.110320 (In English)

Wu, L., Hu, X., Xu, L., Zhang, G. (2020) Cod skin oligopeptide inhibits human gastric carcinoma cell growth by inducing apoptosis. Nutrition and Cancer, vol. 72, no. 2, pp. 218–225. https://doi.org/10.1080/01635581.2019.1622740 (In English)

Yamaguchi, Y., Yamamoto, K., Sato, Y. et al. (2016) Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation. Biomedical Research, vol. 37, no. 2, pp. 153–159. https://doi.org/10.2220/biomedres.37.153 (In English)

Zalomaeva, E. S., Ivanova, P. N., Chalisova, N. I. et al. (2020) Effects of weak static magnetic field and oligopeptides on cell proliferation and cognitive functions in different animal species. Technical Physics, vol. 65, no. 10, pp. 1585–1590. https://doi.org/10.1134/S1063784220100254 (In English)

Загрузки

Опубликован

01.09.2023

Выпуск

Раздел

Экспериментальные статьи