Действие агониста TAAR1 RO 5263397 на дискинезию, вызываемую инъекцией α-NETA
DOI:
https://doi.org/10.33910/2687-1270-2023-4-3-346-355Ключевые слова:
следовые амины, рецепторы следовых аминов, TAAR1, TAAR5, α-NETA, дискинезия, нокаутные мыши, агонист TAAR1 RO5263397Аннотация
В настоящее время собрано достаточно данных о роли следовых аминов (СА) как нейромодуляторов в центральной нервной системе млекопитающих. СА имеют структурное сходство с классическими биогенными аминами, а изменения их концентрации связаны с различными психическими расстройствами. В центральной нервной системе человека широко экспрессируются два представителя семейства рецепторов СА — TAAR1 и TAAR5. В первой части исследования изучены поведенческие эффекты инъекции α-NETA (2-(alpha-naphthoyl) ethyltrimethylammonium iodide, 10 мг/кг, внутрибрюшинно) на мышей с нокаутом TAAR5 (KO TAAR5) и на мышей дикого типа (WT). Во второй части исследовано влияние агониста TAAR1, RO 5263397, на дискинезию, вызванную инъекцией α-NETA, у мышей-самцов C57BL/6. Было установлено, что инъекция α-NETA (10 мг/кг) вызывает дискинезию как у мышей дикого типа, так и у мышей KO TAAR5, что позволяет предположить отсутствие связи между дискинезией, индуцированной α-NETA, и рецепторами TAAR5. Во второй части исследования было установлено, что предварительное введение высокой дозы (1 мг/кг) агониста TAAR1 ингибирует дискинезию, индуцированную α-NETA, через 90 минут после инъекции. Кроме того, предварительное введение агониста TAAR1 существенно снижает возникновение длительных тонических спазмов. Таким образом полученные данные позволяют предположить, что агонисты TAAR1 перспективны для лечения определенных форм дискинезии.
Библиографические ссылки
Aleksandrov, A. A., Dmitrieva, E. S., Volnova, A. B. et al. (2019a) Effect of alpha-NETA on auditory event related potentials in sensory gating study paradigm in mice. Neuroscience Letters, vol. 712, no. 2, article 134470. https://doi.org/10.1016/j.neulet.2019.134470 (In English)
Aleksandrov, A. A., Dmitrieva, E. S., Volnova, A. B. et al. (2019b) Effect of trace amine-associated receptor 1 agonist RO5263397 on sensory gating in mice. NeuroReport, vol. 30, no. 15, pp. 1004–1007. https://doi.org/10.1097/WNR.0000000000001313 (In English)
Aleksandrov, A. A., Knyazeva, V. M., Volnova, A. B. et al. (2019c) Trace amine-associated receptor 1 agonist modulates mismatch negativity-like responses in mice. Frontiers in Pharmacology, vol. 10, article 470. https://doi.org/10.3389/fphar.2019.00470 (In English)
Aleksandrov, A. A., Polyakova, N. V., Vinogradova, E. P. et al. (2019d) The TAAR5 agonist α-NETA causes dyskinesia in mice. Neuroscience Letters, vol. 704, pp. 208–211. https://doi.org/10.1016/j.neulet.2019.04.028 (In English)
Alvarsson, A., Zhang, X., Stan, T. L. et al. (2015) Modulation by trace amine-associated receptor 1 of experimental parkinsonism, L-DOPA responsivity, and glutamatergic neurotransmission. Journal of Neuroscience, vol. 35, no. 41, pp. 14057–14069. https://doi.org/10.1523/JNEUROSCI.1312-15.2015 (In English)
Berry, M. D., Gainetdinov, R. R., Hoener, M. C., Shahid, M. (2017) Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacology & Therapeutics, vol. 180, pp. 161–180. https://doi.org/10.1016/j.pharmthera.2017.07.002 (In English)
Boulton, A. A. (1980) The properties and potential function of some brain trace amines. Progress in Clinical and Biological Research, vol. 39, pp. 291–303. https://pubmed.ncbi.nlm.nih.gov/6105673 (In English)
Branchek, T. A., Blackburn, T. P. (2003) Trace amine receptors as targets for novel therapeutics: Legend, myth and fact. Current Opinion in Pharmacology, vol. 3, no. 1, pp. 90–97. https://doi.org/10.1016/s1471-4892(02)00028-0 (In English)
Chagraoui, A., Boulain, M., Juvin, L. et al. (2020) L-DOPA in Parkinson’s disease: Looking at the “false” neurotransmitters and their meaning. International Journal of Molecular Sciences, vol. 21, no. 1, article 294. https://doi.org/10.3390/ijms21010294 (In English)
Charan, J., Kantharia, N. D. (2013) How to calculate sample size in animal studies? Journal of Pharmacology and Pharmacotherapeutics, vol. 4, no. 4, pp. 303–306. https://doi.org/10.4103/0976-500X.119726 (In English)
DasGupta, A. (2008) Asymptotic theory of statistics and probability. New York: Springer Publ., 722 p. https://doi.org/10.1007/978-0-387-75971-5 (In English)
Dinter, J., Mühlhaus, J., Wienchol, C. L. et al. (2015) Inverse agonistic action of 3-iodothyronamine at the human trace amine-associated receptor 5. PLoS One, vol. 10, no. 2, article e0117774. https://doi.org/10.1371/journal.pone.0117774 (In English)
Espinoza, S., Manago, F., Leo, D. et al. (2012) Role of catechol-O-methyltransferase (COMT)-dependent processes in Parkinson’s disease and L-DOPA treatment. CNS & Neurological Disorders-Drug Targets, vol. 11, no. 3, pp. 251–263. https://doi.org/10.2174/187152712800672436 (In English)
Espinoza, S., Salahpour, A., Masri, B. et al. (2011) Functional interaction between trace amine-associated receptor 1 and dopamine D2 receptor. Molecular Pharmacology, vol. 80, no. 3, pp. 416–425. https://doi.org/10.1124/mol.111.073304 (In English)
European Convention for the protection of vertebrate animals used for experimental and other scientific purposes. (1986) Strasbourg: [s. n.], 11 p. (In English)
Fried, R., Dehling, H. (2011) Robust nonparametric tests for the two-sample location problem. Statistical Methods & Applications, vol. 20, no. 4, pp. 409–422. https://doi.org/10.1007/s10260-011-0164-1 (In English)
Gainetdinov, R. R., Hoener, M. C., Berry, M. D. (2018) Trace amines and their receptors. Pharmacological Reviews, vol. 70, no. 3, pp. 549–620. https://doi.org/10.1124/pr.117.015305 (In English)
Kumar, R., Kumar, A., Långström, B., Darreh-Shori, T. (2017) Discovery of novel choline acetyltransferase inhibitors using structure-based virtual screening. Scientific Reports, vol. 7, no. 1, article 16287. https://doi.org/10.1038/s41598-017-16033-w (In English)
Lindemann, L., Meyer, C. A., Jeanneau, K. et al. (2008) Trace amine-associated receptor 1 modulates dopaminergic activity. Journal of Pharmacology and Experimental Therapeutics, vol. 324, no. 3, pp. 948–956. https://doi.org/10.1124/jpet.107.132647 (In English)
Panas, H. N., Lynch, L. J., Vallender, E. J. et al. (2010) Normal thermoregulatory responses to 3-iodothyronamine, trace amines and amphetamine-like psychostimulants in trace amine associated receptor 1 knockout mice. Journal of Neuroscience Research, vol. 88, no. 9, pp. 1962–1969. https://doi.org/10.1002/jnr.22367 (In English)
Pei, Y., Asif-Malik, A., Canales, J. J. (2016) Trace amines and the trace amine-associated receptor 1: Pharmacology, neurochemistry, and clinical implications. Frontiers in Neuroscience, vol. 10, article 148. https://doi.org/10.3389/fnins.2016.00148 (In English)
Revel, F. G., Moreau, J.-L., Gainetdinov, R. R. et al. (2011) TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proceedings of the National Academy of Sciences, vol. 108, no. 20, pp. 8485–8490. https://doi.org/10.1073/pnas.1103029108 (In English)
Revel, F. G., Moreau, J. L., Pouzet, B. et al. (2013) A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic-and antidepressant-like activity, improve cognition and control body weight. Molecular Psychiatry, vol. 18, no. 5, pp. 543–556. https://doi.org/10.1038/mp.2012.57 (In English)
Shitikov, V. K., Rosenberg, G. S. (2013) Randomizatsiya i butstrep: statisticheskij analiz v biologii i ekologii s ispol’zovaniem R [Randomization and bootstrap: Statistical analysis in biology and ecology using R]. Tolyatti: Kassandra Publ., 314 p. (In Russian)
Simmler, L. D., Buchy, D., Chaboz, S. et al. (2016) In vitro characterization of psychoactive substances at rat, mouse, and human trace amine-associated receptor 1. Journal of Pharmacology and Experimental Therapeutics, vol. 357, no. 1, pp. 134–144. https://doi.org/10.1124/jpet.115.229765 (In English)
Sotnikova, T. D., Zorina, O. I., Ghisi, V. et al. (2008) Trace amine associated receptor 1 and movement control. Parkinsonism & Related Disorders, vol. 14, no. 2. Supplement, pp. S99–S102. https://doi.org/10.1016/j.parkreldis.2008.04.006 (In English)
Vinogradova, E. P., Polyakova, N. V., Stankevich, L. N., Aleksandrov, A. A. (2020) Vliyanie agonista TAAR5 α-NETA na povedenie myshej linii C57Bl/6 [Effects of TAAR5 α-NETA agonist on behavior in C57Bl/6 mice]. Zhurnal vysshej nervnoj deyatel’nosti imeni I. P. Pavlova — I. P. Pavlov Journal of Higher Nervous Activity, vol. 70, no. 1, pp. 62–70. https://doi.org/10.31857/S0044467719060133 (In Russian)
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2024 Надежда Владимировна Полякова, Антон Юрьевич Александров, Вероника Михайловна Князева, Екатерина Павловна Виноградова, Елена Сергеевна Дмитриева, Людмила Николаевна Станкевич, Александр Алексеевич Александров
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Автор предоставляет материалы на условиях публичной оферты и лицензии CC BY-NC 4.0. Эта лицензия позволяет неограниченному кругу лиц копировать и распространять материал на любом носителе и в любом формате, но с обязательным указанием авторства и только в некоммерческих целях. После публикации все статьи находятся в открытом доступе.
Авторы сохраняют авторские права на статью и могут использовать материалы опубликованной статьи при подготовке других публикаций, а также пользоваться печатными или электронными копиями статьи в научных, образовательных и иных целях. Право на номер журнала как составное произведение принадлежит издателю.