Применение метода атомно-силовой микроскопии для исследования ответов механочувствительных каналов Piezo1 фибробластов сердца

Авторы

  • Максим Миндигалеевич Халисов Институт физиологии им. И. П. Павлова РАН https://orcid.org/0000-0002-5171-4690
  • Анна Владиславовна Беринцева Институт физиологии им. И. П. Павлова РАН https://orcid.org/0009-0003-3686-9699
  • Светлана Александровна Подзорова Институт физиологии им. И. П. Павлова РАН
  • Борис Владимирович Крылов Институт физиологии им. И. П. Павлова РАН https://orcid.org/0000-0001-5258-1597
  • Валентина Альбертовна Пеннияйнен Институт физиологии им. И. П. Павлова РАН https://orcid.org/0000-0003-3936-8681

DOI:

https://doi.org/10.33910/2687-1270-2024-5-1-50-59

Ключевые слова:

фибробласты, органотипическая культура ткани, каналы Piezo1, Jedi2, атомно-силовая микроскопия

Аннотация

Установлено, что Jedi2, активатор механочувствительных каналов Piezo1, влияет на рост эксплантатов сердца эмбриональной ткани. Зависимость изменения индекса площади от концентрации действующего агента описывается уравнением Хилла (Кd ≈ 20 мкМ, коэффициент Хилла — 1,6). Концентрация Jedi2, равная 10 мкМ, была выбрана для химической активации механочувствительных каналов Piezo1 в исследовании с помощью метода атомно-силовой микроскопии, поскольку она не влияла на рост эксплантатов сердца. На основании полученной зависимости стимул–ответ для механического воздействия со стороны зонда атомно-силового микроскопа при исследовании влияния Jedi2 на фибробласты была выбрана сила 3 нН, не приводящая к изменению жесткости клеток в ответ на механическую стимуляцию. В отличие от малых сил (1–5 нН), при больших силах стимуляции (6–7 нН) наблюдалось резкое увеличение модуля Юнга фибробластов. Исследование с помощью атомно-силовой микроскопии показало, что Jedi2 вызывает увеличение жесткости фибробластов — модуль Юнга клеток после воздействия исследуемого вещества (68 ± 7 кПа, n = 33) растет по сравнению с контролем (37 ± 4 кПа, n = 29). Эффект воздействия Jedi2 усиливается со временем: в рамках рассмотренного периода максимальное влияние на механические характеристики фибробластов достигается спустя более двух часов воздействия вещества. Мы предполагаем, что наблюдаемый при воздействии Jedi2 и силе стимуляции 3 нН рост жесткости фибробластов связан с вызванным модуляцией работы каналов Piezo1 сдвигом порога запуска ответа клеток в сторону меньших сил.

Библиографические ссылки

Anderson, E. O., Schneider, E. R., Bagriantsev, S. N. (2017) Piezo2 in cutaneous and proprioceptive mechanotransduction in vertebrates. Current Topics in Membranes, vol. 79, pp. 197–217. https://doi.org/10.1016/bs.ctm.2016.11.002 (In English)

Bavi, N., Richardson, J., Heu, C. et al. (2019) PIEZO1-mediated currents are modulated by substrate mechanics. ACS Nano, vol. 13, no. 11, pp. 13545–13559. https://doi.org/10.1021/acsnano.9b07499 (In English)

Blythe, N. M., Muraki, K., Ludlow, M. J. et al. (2019) Mechanically activated Piezo1 channels of cardiac fibroblasts stimulate p38 mitogen-activated protein kinase activity and interleukin-6 secretion. Journal of Biological Chemistry, vol. 294, no. 46, pp. 17395–17408. https://doi.org/10.1074/jbc.RA119.009167 (In English)

Botello-Smith, W. M., Jiang, W., Zhang, H. et al. (2019) A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1. Nature Communications, vol. 10, no. 1, article 4503. https://doi.org/10.1038/s41467-019-12501-1 (In English)

Braidotti, N., Chen, S. N., Long, C. S. et al. (2022) Piezo1 channel as a potential target for hindering cardiac fibrotic remodeling. International Journal of Molecular Sciences, vol. 23, no. 15, article 8065. https://doi.org/10.3390/ijms23158065 (In English)

Broders-Bondon, F., Nguyen Ho-Bouldoires, T. H., Fernandez-Sanchez, M.-E. et al. (2018) Mechanotransduction in tumor progression: The dark side of the force. Journal of Cell Biology, vol. 217, no. 5, pp. 1571–1587. https://doi.org/10.1083/jcb.201701039 (In English)

Chalfie, M. (2009) Neurosensory mechanotransduction. Nature Reviews Molecular Cell Biology, vol. 10, no. 1, pp. 44–52. https://doi.org/10.1038/nrm2595 (In English)

Chubinskiy-Nadezhdin, V. I., Vasileva, V. Y., Vassilieva, I. O. et al. (2019) Agonist-induced Piezo1 activation suppresses migration of transformed fibroblasts. Biochemical and Biophysical Research Communications, vol. 514, no. 1, pp. 173–179. https://doi.org/10.1016/j.bbrc.2019.04.139 (In English)

Coste, B., Mathur, J., Schmidt, M. et al. (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science, vol. 330, no. 6000, pp. 55–60. https://doi.org/10.1126/science.1193270 (In English)

Coste, B., Xiao, B., Santos, J. S. et al. (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature, vol. 483, no. 7388, pp. 176–181. https://doi.org/10.1038/nature10812 (In English)

Dumitru, A. C., Stommen, A., Koehler, M. et al. (2021) Probing PIEZO1 localization upon activation using high-resolution atomic force and confocal microscopy. Nano Letters, vol. 21, no. 12, pp. 4950–4958. https://doi.org/10.1021/acs.nanolett.1c00599 (In English)

Duscher, D., Maan, Z. N., Wong, V. W. et al. (2014) Mechanotransduction and fibrosis. Journal of Biomechanics, vol. 47, no. 9, pp. 1997–2005. https://doi.org/10.1016/j.jbiomech.2014.03.031 (In English)

Emig, R., Knodt, W., Krussig, M. J. et al. (2021) Piezo1 channels contribute to the regulation of human atrial fibroblast mechanical properties and matrix stiffness sensing. Cells, vol. 10, no. 3, article 663. https://doi.org/10.3390/cells10030663 (In English)

Franze, K. (2013) The mechanical control of nervous system development. Development, vol. 140, no. 15, pp. 3069– 3077. https://doi.org/10.1242/dev.079145 (In English)

Gavara, N. (2016) A beginner’s guide to atomic force microscopy probing for cell mechanics. Microscopy Research and Technique, vol. 80, no. 1, pp. 75–84. https://doi.org/10.1002/jemt.22776 (In English)

Gavara, N., Chadwick, R. S. (2012) Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips. Nature Nanotechnology, vol. 7, no. 11, pp. 733–736. https://doi.org/10.1038/nnano.2012.163 (In English)

Goldmann, W. H. (2014) Mechanosensation: A basic cellular process. Progress in Molecular Biology and Translational Science, vol. 126, pp. 75–102. https://doi.org/10.1016/B978-0-12-394624-9.00004-X (In English)

Haase, K., Pelling, A. E. (2015) Investigating cell mechanics with atomic force microscopy. Journal of the Royal Society Interface, vol. 12, no. 104, article 20140970. https://doi.org/10.1098/rsif.2014.0970 (In English)

Habeler, W., Peschanski, M., Monville, C. (2009) Organotypic heart slices for cell transplantation and physiological studies. Organogenesis, vol. 5, no. 2, pp. 62–66. https://doi.org/10.4161/org.5.2.9091 (In English)

Hutter, J. L., Bechhoefer, J. (1993) Calibration of atomic force microscope tips. Review of Scientific Instruments, vol. 64, no. 7, pp. 1868–1873. https://doi.org/10.1063/1.1143970 (In English)

Jiang, Y., Yang, X., Jiang, J., Xiao, B. (2021) Structural designs and mechanogating mechanisms of the mechanosensitive Piezo channels. Trends in Biochemical Sciences, vol. 46, no. 6, pp. 472–488. https://doi.org/10.1016/j.tibs.2021.01.008 (In English)

Khalisov, M. M., Penniyaynen, V. A., Podzorova, S. A. et al. (2020) Kolkhitsin izmenyaet strukturu tsitoskeleta fibroblastov: kolichestvennoe issledovanie adaptivnoj kletochnoj reaktsii metodami atomno-silovoj i konfokal’noj lazernoj skaniruyushchej mikroskopii [The effect of colchicine on the structure of the fibroblast cytoskeleton: A quantitative study of an adaptive cell response by means of atomic force and confocal laser scanning microscopy methods]. Integrativnaya fiziologiya — Integrative Physiology, vol. 1, no. 2, pp. 115–122. https://doi.org/10.33910/2687-1270-2020-1-2-115-122 (In Russian)

Lekka, M. (2016) Discrimination between normal and cancerous cells using AFM. BioNanoScience, vol. 6, pp. 65– 80. https://doi.org/10.1007/s12668-016-0191-3 (In English)

Lin, Y.-C., Guo, Y. R., Miyagi, A. et al. (2019) Force-induced conformational changes in Piezo1. Nature, vol. 573, no. 7773, pp. 230–234. https://doi.org/10.1038/s41586-019-1499-2 (In English)

Lopatina, E. V., Kipenko, A. V., Penniyaynen, V. A. et al. (2015) Organotypic tissue culture investigation of homocysteine thiolactone cardiotoxic effect. Acta Physiologica Hungarica, vol. 102, no. 2, pp. 137–142. https://doi.org/10.1556/036.102.2015.2.4 (In English)

Lyon, R. C., Zanella, F., Omens, J. H., Sheikh, F. (2015) Mechanotransduction in cardiac hypertrophy and failure. Circulation Research, vol. 116, no. 8, pp. 1462–1476. https://doi.org/10.1161/CIRCRESAHA.116.304937 (In English)

Ostrow, L. W., Sachs, F. (2005) Mechanosensation and endothelin in astrocytes-hypothetical roles in CNS pathophysiology. Brain Research Reviews, vol. 48, no. 3, pp. 488–508. https://doi.org/10.1016/j.brainresrev.2004.09.005 (In English)

Penniyaynen, V. A., Kipenko, A. V., Lopatina, E. V. et al. (2015) The effect of marinobufagenin on the growth and proliferation of cells in the organotypic culture. Doklady Biological Sciences, vol. 462, pp. 164–166. https://doi.org/10.1134/S0012496615030096 (In English)

Qin, L., He, T., Chen, S. et al. (2021) Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. Bone Research, vol. 9, article 44. https://doi.org/10.1038/s41413-021-00168-8 (In English)

Ranade, S. S., Syeda, R., Patapoutian, A. (2015) Mechanically activated ion channels. Neuron, vol. 87, no. 6, pp. 1162–1179. https://doi.org/10.1016/j.neuron.2015.08.032 (In English)

Rotsch, C., Radmacher, M. (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study. Biophysical Journal, vol. 78, no. 1, pp. 520–535. https://doi.org/10.1016/S0006-3495(00)76614-8 (In English)

Sneddon, I. N. (1965) The relation between load and penetration in the axi-symmetric boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, vol. 3, no. 1, pp. 47–57. https://doi.org/10.1016/0020-7225(65)90019-4 (In English)

Sundstrom, L., Pringle, A., Morrison, B. III., Bradley, M. (2005) Organotypic cultures as tools for functional screening in the CNS. Drug Discovery Today, vol. 10, no. 14, pp. 993–1000. https://doi.org/10.1016/S1359-6446(05)03502-6 (In English)

Syeda, R., Xu, J., Dubin, A. E. et al. (2015) Chemical activation of the mechanotransduction channel Piezo1. eLife, vol. 4, article e07369. https://doi.org/10.7554/eLife.07369 (In English)

Taberner, F. J., Prato, V., Schaefer, I. et al. (2019) Structure-guided examination of the mechanogating mechanism of Piezo2. Proceedings of the National Academy of Sciences, vol. 116, no. 28, pp. 14260–14269. https://doi.org/10.1073/pnas.1905985116 (In English)

Vasileva, V., Chubinskiy-Nadezhdin, V. (2023) Regulation of PIEZO1 channels by lipids and the structural components of extracellular matrix/cell cytoskeleton. Journal of Cellular Physiology, vol. 238, no. 5, pp. 918–930. https://doi.org/10.1002/jcp.31001 (In English)

Vollrath, M. A., Kwan, K. Y., Corey, D. P. (2007) The micromachinery of mechanotransduction in hair cells. Annual Review of Neuroscience, vol. 30, pp. 339–365. https://doi.org/10.1146/annurev.neuro.29.051605.112917 (In English)

Wang, J., Jiang, J., Yang, X. et al. (2022) Tethering Piezo channels to the actin cytoskeleton for mechanogating via the cadherin-β-catenin mechanotransduction complex. Cell Reports, vol. 38, no. 6, article 110342. https://doi.org/10.1016/j.celrep.2022.110342 (In English)

Wang, Y., Chi, S., Guo, H. et al. (2018) A lever-like transduction pathway for long-distance chemical-and mechano-gating of the mechanosensitive Piezo1 channel. Nature Communications, vol. 9, no. 1, article 1300. https://doi.org/10.1038/s41467-018-03570-9 (In English)

Watson,S. A., Scigliano, M., Bardi, I. et al. (2017) Preparation of viable adult ventricular myocardial slices from large and small mammals. Nature Protocols, vol. 12, no. 12, pp. 2623–2639. https://doi.org/10.1038/nprot.2017.139 (In English)

Опубликован

01.07.2024

Выпуск

Раздел

Экспериментальные статьи