Конститутивный и репаративный нейрогенез: роль глии в регенерации и развитии мозга позвоночных

Авторы

  • Илья Александрович Капустянов Национальный научный центр морской биологии им. А. В. Жирмунского ДВО РАН https://orcid.org/0000-0002-8285-897X
  • Евгения Владиславовна Пущина Национальный научный центр морской биологии им. А. В. Жирмунского ДВО РАН https://orcid.org/0000-0003-0388-3147
  • Дмитрий Константинович Обухов Санкт-Петербургский государственный университет https://orcid.org/0000-0001-7233-0752
  • Глеб Геннадьевич Клюка Национальный научный центр морской биологии им. А. В. Жирмунского ДВО РАН

DOI:

https://doi.org/10.33910/2687-1270-2024-5-2-130-143

Ключевые слова:

пролиферация, регенерация, нейрогенез, глиогенез, нейральные стволовые клетки

Аннотация

В обзорной статье представлены данные о конститутивном нейрогенезе в мозге позвоночных животных. Обсуждается участие нейроэпителиальных стволовых клеток и радиальной глии в пре- и постнатальном нейрогенезе ЦНС, а также вклад радиальной глии в эмбриональный и взрослый нейрогенез. Особое внимание в обзоре уделяется анализу особенностей нейрогенеза у низших позвоночных животных (рыб) как перспективной модели для исследования этих процессов. На нескольких видах тихоокеанских лососей изучено влияние процесса фетализации на конститутивный и посттравматический нейрогенез у взрослых животных. Выявленная значительная глиальная пластичность, возникающая в ответ на механическую травму головного мозга у Danio rerio L., указывает, что жесткая регуляция баланса покоя и пролиферации является определяющим фактором регенеративной активности и способствует поддержанию эффективных пулов стволовых клеток, готовых реагировать на потерю нейронов. Обсуждаются современные аспекты проблемы, связанные с гетерогенностью пулов нейральных стволовых клеток и радиальной глии.

Библиографические ссылки

Adamsky, A., Kol, A., Kreisel, T. et al. (2018) Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell, vol. 174, no. 1, pp. 59–71. https://doi.org/10.1016/j.cell.2018.05.002 (In English)

Alunni, A., Bally-Cuif, L. (2016) A comparative view of regenerative neurogenesis in vertebrates. Development, vol. 143, no. 5, pp. 741–753. https://doi.org/10.1242/dev.122796 (In English)

Alvarez-Buylla, A., Garcıa-Verdugo, J. M. (2002) Neurogenesis in the subventricular zone of the adult brain. Journal of Neuroscience, vol. 22, no. 3, pp. 629–634. https://doi.org/10.1523/JNEUROSCI.22-03-00629.2002 (In English)

Antos, C. L., Tanaka, E. M. (2010) Vertebrates that regenerate as models for guiding stem cells. In: E. Meshorer, K. Plath. (eds.). The cell biology of stem cells. Advances in Experimental Medicine and Biology, vol. 695, pp. 184– 214. https://doi.org/10.1007/978-1-4419-7037-4_13 (In English)

Barbosa, J. S., Sanchez-Gonzalez, R., Di Giaimo, R. et al. (2015) Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain. Science, vol. 348, no. 6236, pp. 789–793. https://doi.org/10.1126/science.aaa2729 (In English)

Bhattarai, P., Cosacak, M. I., Mashkaryan, V. et al. (2020) Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer’s model of adult zebrafish brain. PLoS Biology, vol. 18, no. 1, article e3000585. https://doi.org/10.1371/journal.pbio.3000585 (In English)

Bhattarai, P., Thomas, A. K., Cosacak, M. I. et al. (2016) IL4/STAT6 signaling activates neural stem cell proliferation and neurogenesis upon Amyloid-β42 aggregation in adult zebrafish brain. Cell Reports, vol. 17, no. 4, pp. 941– 948. https://doi.org/10.1016/j.celrep.2016.09.075 (In English)

Bhattarai, P., Thomas, A. K., Zhang, Y., Kizil, C. (2017) The effects of aging on Amyloid-β42-induced neurodegeneration and regeneration in adult zebrafish brain. Neurogenesis, vol. 4, no. 1, article e1322666. https://doi.org/10.1080/23262133.2017.1322666 (In English)

Bojarskaite, L., Bjørnstad, D. M., Pettersen, K. H., et al. (2019) Ca2+ signaling in astrocytes is sleep-wake state specific and modulates sleep. bioRxiv, article 750281. https://doi.org/10.1101/750281 (In English)

Brancaccio, M., Patton, A. P., Chesham, J. E. et al. (2017) Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron, vol. 93, no. 6, pp. 1420–1435. https://doi.org/10.1016/j.neuron.2017.02.030 (In English)

Choi, S. H., Tanzi, R. E. (2019) Is Alzheimer’s disease a neurogenesis disorder? Cell Stem Cell, vol. 25, no. 1, pp. 7–8. https://doi.org/10.1016/j.stem.2019.06.001 (In English)

Coolen, M., Labusch, M., Mannioui, A. et al. (2020) Mosaic heterochrony in neural progenitors sustains accelerated brain growth and neurogenesis in the Juvenile Killifish N. furzeri. Current Biology, vol. 30, no. 4, pp. 736–745. https://doi.org/10.1016/j.cub.2019.12.046 (In English)

Corkrum, M., Covelo, A., Lines, J. et al. (2020) Dopamine-evoked synaptic regulation in the nucleus accumbens requires astrocyte activity. Neuron, vol. 105, no. 6, pp. 1036–1047. https://doi.org/10.1016/j.neuron.2019.12.026 (In English)

Cosacak, M. I., Bhattarai, P., Bocova, L. et al. (2017) Human TAUP301L overexpression results in TAU hyperphosphorylation without neurofibrillary tangles in adult zebrafish brain. Scientific Reports, vol. 7, no. 1, article 12959. https://doi.org/10.1038/s41598-017-13311-5 (In English)

Cosacak, M. I., Bhattarai, P., Kizil, C. (2020) Alzheimer’s disease, neural stem cells and neurogenesis: cellular phase at single-cell level. Neural Regeneration Research, vol. 15, no. 5, рр. 824–827. https://doi.org/10.4103/1673-5374.268896 (In English)

Cosacak, M. I., Bhattarai, P., Reinhardt, S. et al. (2019) Single-cell transcriptomics of the adult zebrafish brain. Journal of Experimental Biology, vol. 27, no. 4, pp. 1307–1318. https://doi.org/10.1016/j.celrep.2019.03.090 (In English)

Dennis, C. V., Suh, L. S., Rodriguez, M. L. et al. (2016) Human adult neurogenesis across the ages: An immunohistochemical study. Neuropathology and Applied Neurobiology, vol. 42, no. 7, pp. 621–638. https://doi.org/10.1111/nan.12337 (In English)

Diaz Verdugo, C., Myren-Svelstad, S., Aydin, E. et al. (2019) Glia-neuron interactions underlie state transitions to generalized seizures. Nature Communications, vol. 10, no. 1, article 3830. https://doi.org/10.1038/s41467-019-11739-z (In English)

Diotel, N., Lübke, L., Strähle, U. et al. (2020) Common and distinct features of adult neurogenesis and regeneration in the telencephalon of Zebrafish and Mammals. Frontiers in Neuroscience, vol. 14, article 568930. https://doi.org/10.3389/fnins.2020.568930 (In English)

Diotel, N., Rodriguez Viales, R., Armant, O. et al. (2015) Comprehensive expression map of transcription regulators in the adult zebrafish telencephalon reveals distinct neurogenic niches. Journal of Comparative Neurology, vol. 523, no. 8, pp. 1202–1221. https://doi.org/10.1002/cne.23733 (In English)

Dorsemans, A. C., Soulé, S., Weger, M. et al. (2017) Impaired constitutive and regenerative neurogenesis in adult hyperglycemic zebrafish. Journal of Comparative Neurology, vol. 525, no. 3, pp. 442–458. https://doi.org/10.1002/cne.24065 (In English)

Edelmann, K., Glashauser, L., Sprungala, S. et al. (2013) Increased radial glia quiescence, decreased reactivation upon injury and unaltered neuroblast behavior underlie decreased neurogenesis in the aging zebrafish telencephalon. Journal of Comparative Neurology, vol. 521, no. 13, pp. 3099–3115. https://doi.org/10.1002/cne.23347 (In English)

Fares, J., Bou Diab, Z., Nabha, S., Fares, Y. (2019) Neurogenesis in the adult hippocampus: History, regulation, and prospective roles. International Journal of Neuroscience, vol. 129, pp. 598–611. https://doi.org/10.1080/00207454.2018.1545771 (In English)

Fellin, T., Halassa, M. M., Terunuma, M. et al. (2009) Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo. Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 35, pp. 15037–15042. https://doi.org/10.1073/pnas.0906419106 (In English)

Furlan, A., Dyachuk, V., Kastriti, M. E. et al. (2017) Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science, vol. 357, no. 6346, article eaal3753. https://doi.org/10.1126/science.aal3753 (In English)

Goss, R. J. (1992) The evolution of regeneration: Adaptive or inherent? Journal of Theoretical Biology, vol. 159, no. 2, pp. 403–414. https://doi.org/10.1016/S0022-5193(05)80704-0 (In English)

Götz, M., Sirko, S., Beckers, J., Irmler, M. (2015) Reactive astrocytes as neural stem or progenitor cells: In vivo lineage, in vitro potential, and genome-wide expression analysis. Glia, vol. 63, no. 8, pp. 1452–1468. https://doi.org/10.1002/glia.22850 (In English)

Hansen, D. V., Lui, J. H., Parker, P. R., Kriegstein, A. R. (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature, vol. 464, no. 7288, pp. 554–561. https://doi.org/10.1038/nature08845 (In English)

Henneberger, C., Papouin, T., Oliet, S. H., et al. (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature, vol. 463, no. 7278, pp. 232–236. https://doi.org/10.1038/nature08673 (In English)

Ilyin, N. P., Galstyan, D. S., Demin, K. A., Kalueff, A. V. (2023) Behavioral, genomic and neurochemical deficits evoked by neurotrauma in adult Zebrafish (Danio rerio). Journal of Evolutionary Biochemistry and Physiology, vol. 59, pp. 2179–2195. https://doi.org/10.1134/S0022093023060224 (In English)

Kaev, A. M. (2002) Osobennosti vosproizvodstva kety Oncorhynchus keta v svyazi s ee razmerno-vozrastnoj strukturoj [Peculiarities of reproduction of the chum salmon Oncorhynchus keta in connection with its size and age structure]. Extended abstract of the PhD dissertation (Biology). Yuzhno-Sakhalinsk, Russian Federal institute of fisheries and oceanography, 48 p. (In Russian)

Kalamakis, G., Brüne, D., Ravichandran, S. et al. (2019) Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. Cell, vol. 176, no. 6, pp. 1407–1419. https://doi.org/10.1016/j.cell.2019.01.040 (In English)

Kapustyanov, I. A., Pushchina, E. V., Varaksin, A. A. (2022) Proliferaciya kletok i ekspressiya MAP2, vimentina i nestina pri hronicheskoj i povtornoj ostroj travme mezencefalona molodi kety Oncorhynchus keta [Cell proliferation and expression of MAP2, vimentin and nestin in chronic and repeated acute mesencephalon injury of young chum salmon Oncorhynchus keta]. In: Z. R. Khismatullina (ed.). Sovremennaya neyrobiologiya: fundamental’nyye issledovaniya i prakticheskiye aspekty: materialy Vserossiyskoy konferentsii, posvyashchennoy pamyati professora L. B. Kalimullinoy [Modern neurobiology: Fundamental research and practical aspects: Materials of the All-Russian conference dedicated to the memory of Professor L. B. Kalimullina]. Ufa: Bashkir State University Publ., pp. 151–163. (In Russian)

Kaslin, J., Kroehne, V., Ganz, J. et al. (2017) Distinct roles of neuroepithelial-like and radial glia-like progenitor cells in cerebellar regeneration. Development, vol. 144, no. 8, pp. 1462–1471. https://doi.org/10.1242/dev.144907 (In English)

Kempermann, G., Gage, F. H., Aigner, L. et al. (2018) Human adult neurogenesis: Evidence and remaining questions. Cell Stem Cell Minireview, vol. 23, no. 1, pp. 25–30. https://doi.org/10.1016/j.stem.2018.04.004 (In English)

Kizil, C., Kaslin, J., Kroehne, V., Brand, M. (2012) Adult neurogenesis and brain regeneration in zebrafish. Developmental Neurobiology, vol. 72, no. 3, pp. 429–461. https://doi.org/10.1002/dneu.20918 (In English)

Kriegstein, A., Alvarez-Buylla, A. (2009) The glial nature of embryonic and adult neural stem cells. Annual Review of Neuroscience, vol. 32, pp. 149–184. https://doi.org/10.1146/annurev.neuro.051508.135600 (In English)

Lam, C. S., Marz, M., Strähle, U. (2009) GFAP and nestin reporter lines reveal characteristics of neural progenitors in the adult Zebrafish brain. Developmental Dynamics, vol. 238, no. 2, pp. 475–486. https://doi.org/10.1002/dvdy.21853 (In English)

Lange, C., Turrero García, M., Decimo, I. et al. (2016). Relief of hypoxia by angiogenesis promotes neural stem cell differentiation by targeting glycolysis. The EMBO Journal, vol. 39, no. 4, article e103257. https://doi.org/10.15252/embj.201592372 (In English)

Lee, J. Y., Nagano, Y., Taylor, J. P. et al. (2010) Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. Journal of Cell Biology, vol. 189, no. 4, pp. 671–679. https://doi.org/10.1083/jcb.201001039 (In English)

Lindsey, B. W., Hall, Z. J., Heuze, A. et al. (2018) The role of neuro-epithelial-like and radial-glial stem and progenitor cells in development, plasticity, and repair. Progress in Neurobiology, vol. 170, pp. 99–114. https://doi.org/10.1016/j.pneurobio.2018.06.004 (In English)

Lui, J. H., Hansen, D. V., Kriegstein, A. R. (2011) Development and evolution of the human neocortex. Cell, vol. 146, no. 1, pp. 18–36. https://doi.org/10.1016/j.cell.2011.06.030 (In English)

Lyons, D. A., Talbot, W. S. (2015) Glial cell development and function in zebrafish. Cold Spring Harbor Perspectives in Biology, vol. 7, no. 11, article a020586. https://doi.org/10.1101/cshperspect.a020586 (In English)

Ma, Z., Stork, T., Bergles, D. E., Freeman, M. R. (2016) Neuromodulators signal through astrocytes to alter neural circuit activity and behaviour. Nature, vol. 539, no. 7629, pp. 428–432. https://doi.org/10.1038/nature20145 (In English)

Mack, A. F., De Oliveira-Mello, L., Mattheus, U., Neckel, P. H. (2021) Organization of radial glia reveals growth pattern in the telencephalon of a percomorph fish Astatotilapia burtoni. Journal of Comparative Neurology, vol. 529, no. 10, pp. 2813–2823. https://doi.org/10.1002/cne.25126 (In English)

Malatesta, P., Hack, M. A., Hartfuss, E. et al. (2003) Neuronal or glial progeny: Regional differences in radial glia fate. Neuron, vol. 37, no. 5, pp. 751–764. https://doi.org/10.1016/s0896-6273(03)00116-8 (In English)

März, M., Schmidt, R., Rastegar, S., Strähle, U. (2010) Expression of the transcription factor Olig2 in proliferating cells in the adult zebrafish telencephalon. Developmental dynamics, vol. 239, no. 12, pp. 3336–3349. https://doi.org/10.1002/dvdy.22455 (In English)

McLean, D. L., Fetcho, J. R. (2009) Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones. Journal of Neuroscience, vol. 29, no. 43, pp. 13566–13577. https://doi.org/10.1523/JNEUROSCI.3277-09.2009 (In English)

Mizrak, D., Bayin, N. S., Yuan, J. et al. (2019) Single-cell profiling and SCOPE-seq reveal lineage dynamics of adult ventricular-subventricular zone neurogenesis and NOTUM as a key regulator. Cell Reports, vol. 31, no. 12, article 107805. http://dx.doi.org/10.1016/j.celrep.2020.107805 (In English)

Moreno-Jiménez, E. P., Terreros-Roncal, J., Flor-García, et al. (2021) Evidences for adult hippocampal neurogenesis in humans. Journal of Neuroscience, vol. 41, no. 12, pp. 2541-2553. https://doi.org/10.1523/JNEUROSCI.0675-20.2020 (In English)

Moreno-Jiménez, E. P., Flor-García, M., Terreros-Roncal, J. et al. (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nature Medicine, vol. 25, no. 4, pp. 554–560. https://doi.org/10.1038/s41591-019-0375-9 (In English)

Morrens, J., Van Den Broeck, W., Kempermann, G. (2012). Glial cells in adult neurogenesis. Glia, vol. 60, no. 2, pp. 159-174. https://doi.org/10.1002/glia.21247 (In English)

Mu, Y., Bennett, D. V., Rubinov, M., Narayan, S. et al. (2019) Glia accumulate evidence that actions are futile and suppress unsuccessful behavior. Cell, vol. 178, no. 1, pp. 27–43. https://doi.org/10.1016/j.cell.2019.05.050 (In English)

Mueller, T., Wullimann, M. F. (2009) BrdU-, neuroD (nrd)- and Hu-studies reveal unusual non-ventricular neurogenesis in the postembryonic zebrafish forebrain. Mechanisms of Development, vol. 126, no. 3-4, pp. 220– 231. http://dx.doi.org/10.1016/S0925-4773(02)00194-6 (In English)

Nato, G., Caramello, A., Trova, S. et al. (2015) Striatal astrocytes produce neuroblasts in an excitotoxic model of Huntington’s disease. Development, vol. 142, no. 5, pp. 840–845. http://dx.doi.org/10.1242/dev.116657 (In English)

Noctor, S. C., Flint, A. C., Weissman, T. A. et al. (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. Journal of Neuroscience, vol. 22, no. 8, pp. 3161–3173. https://doi.org/10.1523/JNEUROSCI.22-08-03161.2002 (In English)

Obuhov, D. K., Tsekhmistrenko, T. A., Vasil’eva, V. A. (2019) Stroenie i razvitie kory bol’shogo mozga [Construction and development of the cerebral cortex]. Moscow: Sputnik+ Publ., 538 p. (In Russian)

Obukhov, D. K., Pushchina, E. V., Varaksin, A. A (2015) Struktura proliferativnyh zon v CNS vzroslyh pozvonochnyh zhivotnyh [Structure of proliferative zones in the central nervous system of adult vertebrates]. Voprosy morfologii XXI veka, vol. 4, pp. 43–51. (In Russian)

Obukhov, D. K., Tsehmistrenko, T. A., Puschina, E. V., Varaksin, A. A. (2020) Formation of neuronal and neuroglial populations during pre- and postnatal development of CNS in vertebrates. Neuroscience and Behavioral Physiology, vol. 50, no. 6, pp. 810–815. https://doi.org/10.1007/s11055-o29-00970-7 (In English)

Oe, Y., Wang, X., Patriarchi, T. et al. (2020) Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance. Nature Communications, vol. 11, no. 1, article 471. https://doi.org/10.1038/s41467-020-14378-x (In English)

Pabst, M., Braganza, O., Dannenberg, H. et al. (2016) Astrocyte intermediaries of septal cholinergic modulation in the hippocampus. Neuron, vol. 90, no. 4, pp. 853–865. https://doi.org/10.1016/j.neuron.2016.04.003 (In English)

Pacary, E., Martynoga, B., Guillemot, F. (2012) Crucial first steps: the evolution of the neocortex. Neuron, vol. 76, no. 2, pp. 209–221. https://doi.org/10.1016/j.neuron.2012.04.002 (In English)

Petrik, D., Myoga, M. H., Grade, S. et al. (2018) Epithelial sodium channel regulates adult neural stem cell proliferation in a flow-dependent manner. Cell Stem Cell, vol. 22, no. 6, pp. 865–878. http://dx.doi.org/10.1016/j.stem.2018.04.016 (In English)

Pryazhnikov, E., Khiroug, L. (2008) Sub-micromolar increase in [Ca(2+)](i) triggers delayed exocytosis of ATP in cultured astrocytes. Glia, vol. 56, no. 1, pp. 38–49. https://doi.org/10.1002/glia.20590 (In English)

Pushchina, E. V., Kapustyanov, I. A., Varaksin, A. A. (2019a) Proliferaciya, nejro- i gliogenez v norme i pri mekhanicheskom povrezhdenii mezencefalicheskogo tegmentuma molodi kety Oncorhynchus keta [Proliferation, neuro- and glycogenesis in normal and mechanical damage to the mesencephalic tegmentum of juvenile chum salmon Oncorhynchus keta]. Ontogenez — Ontogenesis, vol. 50, no. 2, pp. 106–126. (In Russian)

Pushchina, E. V., Kapustyanov, I. A., Varaksin, A. A. (2019b) Proliferation and neuro- and gliogenesis in normal and mechanically damaged mesencephalic tegmentum in juvenile chum salmon Oncorhynchus keta. Russian Journal of Developmental Biology, vol. 50, no. 2, pp. 59–76. http://dx.doi.org/10.1134/S106236041902005X (In English)

Pushchina, E. V., Kapustyanov, I. A., Varaksin, A. A. (2020а) Neural stem cells/neuronal precursor cells and postmitotic neuroblasts in constitutive neurogenesis and after traumatic injury to the mesencephalic tegmentum of juvenile chum salmon Oncorhynchus keta. Brain Sciences, vol. 10, no. 2, article 65. http://dx.doi.org/10.3390/brainsci10020065 (In English)

Pushchina, E. V., Marinina, K. S., Myasoyedov, S. D. (2020b) Hydrogen sulfide and pathophysiology of the CNS. Neurophysiology, vol. 52, no. 4, pp. 308–321. http://dx.doi.org/10.1007/s11062-021-09887-4 (In English)

Pushchina, E. V., Stukaneva, M. E., Varaksin, A. A. (2020c) Hydrogen sulfide modulates adult and reparative neurogenesis in the cerebellum of juvenile masu salmon Oncorhynchus masou. International Journal of Molecular Sciences, vol. 21, article 9638. https://doi.org/10.3390/ijms21249638 (In English)

Pushchina, E. V., Varaksin, A. A. (2024) Constitutive neurogenesis and neuronal plasticity in the adult cerebellum and brainstem of rainbow trout Oncorhynchus mykiss. International Journal of Molecular Sciences, vol. 25, no. 11, article 5595. https://doi.org/10.3390/ijms25115595 (In English)

Pushchina, E. V., Varaksin, A. A., Obukhov, D. K. (2019c) Cystathionine β-synthase in the brain of the trout Oncorhynchus mykiss after unilateral eye damage and in conditions of in vitro cultivation. Russian Journal of Developmental Biology, vol. 50, no. 2, рр. 39–58. https://doi.org/10.1134/S1062360419020048 (In English)

Pushchina, E. V., Varaksin, A. A., Obukhov, D. K. (2022) Molecular markers of adult neurogenesis in the telencephalon and tectum of rainbow trout Oncorhynchus mykiss. International Journal of Molecular Sciences, vol. 23, no. 3, article 1188. http://dx.doi.org/10.3390/ijms23031188 (In English)

Pushchina, E. V., Varaksin, A. A., Obukhov, D. K., Prudnikov, I. M. (2020d) GFAP expression in the optic nerve and increased H2S generation in the integration centers of the rainbow trout (Oncorhynchus mykiss) brain after unilateral eye injury. Neural Regeneration Research, vol. 15, no. 10, pp. 1867–1886. https://doi.org/10.4103/1673-5374.280320 (In English)

Pushchina, E. V., Zharikova, E. I., Varaksin, A. A. (2021) Mechanical brain injury increases cells’ production of cystathionine β-synthase and glutamine synthetase but reduces Pax2 expression in the telencephalon of juvenile chum salmon Oncorhynchus keta. International Journal of Molecular Sciences, vol. 22, no. 3, article 1279. http://dx.doi.org/10.3390/ijms22031279 (In English)

Pushchina, E. V., Zharikova, E. I., Varaksin, A. A. et al. (2020e) Proliferation, adult neuronal stem cells and cells migration in pallium during constitutive neurogenesis and after traumatic injury of telencephalon of juvenile masou salmon Oncorhynchus masou. Brain Sciences, vol. 10, no. 4, article 222. http://dx.doi.org/10.3390/brainsci10040222 (In English)

Raponi, E., Agenes, F., Delphin, C. et al. (2007) S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia, vol. 55, no. 2, pp. 165–177. https://doi.org/10.1002/glia.20445 (In English)

Rastegar, S., Parimisetty, A., Cassam Sulliman, N. et al. (2019) Expression of adiponectin receptors in the brain of adult zebrafish and mouse: Links with neurogenic niches and brain repair. Journal of Comparative Neurology, vol. 527, no. 14, pp. 2317–2333. https://doi.org/10.1002/cne.24669 (In English)

Rowitch, D. H., Kriegstein, A. R. (2010) Developmental genetics of vertebrate glial-cell specification. Nature, vol. 468, no. 7321, pp. 214–222. https://doi.org/10.1038/nature09611 (In English)

Sekiguchi, A., Sugiura, K., Kikuchi, S. et al. (2016) Roles of astrocytes, microglia, and neurons in the behavioral and motor responses to peripheral nerve injury in the primates. Progress in Neurobiology, vol. 144, pp. 53–80. (In English)

Semyanov, A. (2019) Spatiotemporal pattern of calcium activity in astrocytic network. Cell calcium, vol. 78, pp. 15–25. https://doi.org/10.1016/j.ceca.2018.12.007 (In English)

Shimizu,Y., Ueda, Y., Ohshima, T. (2018) Wnt signaling regulates proliferation and differentiation of radial glia in regenerating zebrafish spinal cord. Glia, vol. 66, no. 7, pp. 1382–1394. https://doi.org/10.1002/glia.23311 (In English)

Sild, M., Ruthazer, E. S. (2011) Radial glia: Progenitor, pathway, and partner. The Neuroscientist, vol. 17, no. 3, pp. 288-302. https://doi.org/10.1177/1073858410385870 (In English)

Slezak, M., Kandler, S., Van Veldhoven, P. P., et al. (2019) Distinct mechanisms for visual and motor-related astrocyte responses in mouse visual cortex. Current Biology, vol. 29, no. 18, pp. 3120–3127. https://doi.org/10.1016/j.cub.2019.07.078 (In English)

Than-Trong, E., Bally-Cuif, L. (2015) Radial glia and neural progenitors in the adult zebrafish central nervous system. Glia, vol. 63, no. 8, pp. 1406–1428. https://doi.org/10.1002/glia.22856 (In English)

Than-Trong, E., Labusch, M., Mannioui, A. (2020) Mosaic heterochrony in neural progenitors sustains accelerated brain growth and neurogenesis in the Juvenile Killifish N. furzeri. Current Biology, vol. 30, no. 4, pp. 736-745. https://doi.org/10.1016/j.cub.2019.12.046 (In English)

Than-Trong, E., Ortica-Gatti, S., Mella, S. et al. (2018) Neural stem cell quiescence and stemness are molecularly distinct outputs of the Notch3 signalling cascade in the vertebrate adult brain. Development, vol. 145, no. 10, article dev161034. http://dx.doi.org/10.1242/dev.161034 (In English)

Tincer, G., Mashkaryan, V., Bhattarai, P., Kizil, C. (2016) Neural stem/progenitor cells in Alzheimer’s disease. The Yale journal of biology and medicine, vol. 89, no. 1, pp. 23–35. PMID: 27505014 (In English)

Urbán, N., Guillemot, F. (2014) Neurogenesis in the embryonic and adult brain: Same regulators, different roles. Frontiers in cellular neuroscience, vol. 8, article 396. https://doi.org/10.3389/fncel.2014.00396 (In English)

Ventura, R. E., Goldman, J. E. (2007) Dorsal radial glia generate olfactory bulb interneurons in the postnatal murine brain. Journal of Neuroscience, vol. 27, no. 16, pp. 4297–4302. https://doi.org/10.1523/JNEUROSCI.0399-07.2007 (In English)

Wallraff, A., Köhling, R., Heinemann, U. et al. (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. Journal of Neuroscience, vol. 26, no. 20, pp. 5438–5447. https://doi.org/10.1523/JNEUROSCI.0037-06.2006 (In English)

Опубликован

30.10.2024

Выпуск

Раздел

Обзоры