Progesterone and anxiety during the oestrus cycle in rats genetically selected for high and low active avoidance

Английский

Авторы

  • Дмитрий Анатольевич Жуков Институт физиологии им. И. П. Павлова РАН
  • Наталья Алексеевна Арутюнян Институт физиологии им. И. П. Павлова РАН
  • Екатерина Павловна Виноградова Санкт-Петербургский государственный университет https://orcid.org/0000-0003-2275-4084

DOI:

https://doi.org/10.33910/2687-1270-2020-1-2-151-155

Ключевые слова:

progesterone, anxiety, oestrus cycle, active avoidance, coping style

Аннотация

In this research, the changes of anxiety and blood progesterone levels during the oestrus cycle were studied in rats genetically selected for high (KHA) and low (KLA) acquisition of active avoidance. Anxiety levels were measured by the time spent in open arms of the elevated plus-maze. Progesterone levels were determined by radioimmunoassay. KLA rats exhibited no significant changes in anxiety levels during the oestrus cycle. KHA rats showed a significant variation of anxiety during the oestrus cycle with a high level in the diestrus phase and a low level in proestrus. Moreover, anxiety in diestrus in KHA rats was higher than in KLA rats. Additionally, increased progesterone levels were observed in KLA rats in comparison with the KHA strain, during both diestrus and proestrus. Anxiety levels corresponded to plasma progesterone during the oestrus cycle in both rat strains.

Библиографические ссылки

Bäckström, T., Bixo, M., Johansson, M. et al. (2014) Allopregnanolone and mood disorders. Progresses in Neurobiology, vol. 113, pp. 88–94. PMID: 23978486. DOI: 10.1016/j.pneurobio.2013.07.005 (In English)

Beall, D., Reichstein, T. (1938) Isolation of progesterone and allopregnanolone from the adrenal. Nature, vol. 142, no. 3593, p. 479. DOI: 10.1038/142479b0 (In English)

Belelli, D., Brown, A. R., Mitchell, S. J. et al. (2018) Endogenous neurosteroids influence synaptic GABAA receptors during postnatal development. Journal of Neuroendocrinology, vol. 30, no. 2, article e12537. PMID: 28905487. DOI: 10.1111/jne.12537 (In English)

Camacho-Arroyo, I., Hansberg-Pastor, V., Vázquez-Martínez, E. R., Cerbón, M. (2017) Mechanism of progesterone action in the brain. In: D. W. Pfaff, M. Joëls (eds.). Hormones, brain and behavior. 3rd ed. Vol. 3. S. p.: Academic Press, pp. 181–214. DOI: 10.1016/B978-0-12-803592-4.00053-5 (In English)

Compagnone, N. A., Mellon, S. H. (2000) Neurosteroids: Biosynthesis and function of these novel neuromodulators. Frontiers in Neuroendocrinology, vol. 21, no. 1, pp. 1–56. PMID: 10662535. DOI: 10.1006/frne.1999.0188 (In English)

Conway, C. A., Jones, B. C., DeBruine, L. M. et al. (2007) Salience of emotional displays of danger and contagion in faces is enhanced when progesterone levels are raised. Hormones and Behavior, vol. 51, no. 2, pp. 202–206. PMID: 17150220. DOI: 10.1016/j.yhbeh.2006.10.002 (In English)

Corpéchot, C., Robel, P., Axelson, M. et al. (1981) Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 8, pp. 4704–4707. PMID: 6458035. DOI: 10.1073/pnas.78.8.4704 (In English)

Dichtel, L. E., Lawson, E. A., Schorr, M. et al. (2017) Neuroactive steroids and affective symptoms in women across the weight spectrum. Neuropsychopharmacology, vol. 42, no. 6, pp. 1436–1444. PMID: 29090684. DOI: 10.1038/npp.2017.269 (In English)

Glynn, L. M., Poggi Davis, E., Sandman, C. A., Goldberg, W. A. (2016) Gestational hormone profiles predict human maternal behavior at 1-year postpartum. Hormones and Behavior, vol. 85, pp. 19–25. PMID: 27427279. DOI: 10.1016/j.yhbeh.2016.07.002 (In English)

Gómez-Camarillo, M. A., Beyer, C., Lucio, R. A. et al. (2011) Differential effects of progesterone and genital stimulation on sequential inhibition of estrous behavior and progesterone receptor expression in the rat brain. Brain Research Bulletin, vol. 85, no. 3–4, pp. 201–206. PMID: 21515343. DOI: 10.1016/j.brainresbull.2011.04.004 (In English)

González-Orozco, J. C., Camacho-Arroyo, I. (2019) Progesterone actions during central nervous system development. Frontiers in Neuroscience, vol. 13, article 503. PMID: 31156378. DOI: 10.3389/fnins.2019.00503 (In English)

Gutai, J. P., Meyer, W. J., Kowarski, A. A., Migeon, C. J. (1977) Twenty-four hour integrated concentrations of progesterone, 17-hydroxyprogesterone and cortisol in normal male subjects. The Journal of Clinical Endocrinology and Metabolism, vol. 44, no. 1, pp. 116–120. DOI: 10.1210/jcem-44-1-116 (In English)

Islas-Preciado, D., López-Rubalcava, C., González-Olvera, J. et al. (2016) Environmental enrichment prevents anxiety-like behavior induced by progesterone withdrawal in two strains of rats. Neuroscience, vol. 336, pp. 123–132. PMID: 27600948. DOI: 10.1016/j.neuroscience.2016.08.050 (In English)

Jung-Testas, I., Hu, Z. Y., Baulieu, E. E., Robel, P. (1989) Neurosteroids: Biosynthesis of pregnenolone and progesterone in primary cultures of rat glial cells. Endocrinology, vol. 125, no. 4, pp. 2083–2091. PMID: 2791979. DOI: 10.1210/endo-125-4-2083 (In English)

Majewska, M. D., Harrison, N. L., Schwartz, R. D. et al. (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science, vol. 232, no. 4753, pp. 1004–1007. PMID: 2422758. DOI: 10.1126/science.2422758 (In English)

Meffre, D., Labombarda, F., Delespierre, B. et al. (2013) Distribution of membrane progesterone receptor alpha in the male mouse and rat brain and its regulation after traumatic brain injury. Neuroscience, vol. 231, pp. 111–124. PMID: 23211561. DOI: 10.1016/j.neuroscience.2012.11.039 (In English)

Mellon, S. H., Deschepper, C. F. (1993) Neurosteroid biosynthesis: Genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Research, vol. 629, no. 2, pp. 283–292. PMID: 8111631. DOI: 10.1016/0006-8993(93)91332-m (In English)

Mensah-Nyagan, A. G., Do-Rego, J. L., Beaujean, D. et al. (1999) Neurosteroids: Expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacological Reviews, vol. 51, no. 1, pp. 63–81. PMID: 10049998. (In English)

Pineles, S. L., Nillni, Y. I., Pinna, G. et al. (2018) PTSD in women is associated with a block in conversion of progesterone to the GABAergic neurosteroids allopregnanolone and pregnanolone measured in plasma. Psychoneuroendocrinology, vol. 93, pp. 133–141. PMID: 29727810. DOI: 10.1016/j.psyneuen.2018.04.024 (In English)

Pinna, G. (2019) Animal models of PTSD: The socially isolated mouse and the biomarker role of allopregnanolone. Frontiers in Behavioral Neuroscience, vol. 13, article 114. PMID: 31244621. DOI: 10.3389/fnbeh.2019.00114 (In English) Pinna, G., Uzunova, V., Matsumoto, K. et al. (2000) Brain allopregnanolone regulates the potency of the GABAA receptor agonist muscimol. Neuropharmacology, vol. 39, no. 3, pp. 440–448. PMID: 10698010. DOI: 10.1016/s0028-3908(99)00149-5

(In English)

Rasmusson, A. M., King, M. W., Valovski, I. et al. (2019) Relationships between cerebrospinal fluid GABAergic neurosteroid levels and symptom severity in men with PTSD. Psychoneuroendocrinology, vol. 102, pp. 95–104. PMID: 30529908. DOI: 10.1016/j.psyneuen.2018.11.027 (In English)

Ryzhova, L. Yu., Koulagin, D. A., Lopatina, N. G. (1983) Skorrelirovannaya izmenchivost’ dvigatel’noj aktivnosti i emotsional’nosti pri selektsii krys na vysokie i nizkie velichiny uslovnykh refleksov aktivnogo izbeganiya [The motor activity and emotionality of the rats selected for high and low level avoidance learning]. Genetika, vol. 19, no. 2, pp. 121–125. (In Russian).

Savchenko, O. N., Proimina, F. I. (1986) Interrelationship of the circadian and ovulatory rhythms of secretion of sex and gonadotropic hormones in intact and neonatally androgenized female rats. Neuroscience and Behavioral Physiology, vol. 16, no. 6, pp. 534–538. PMID: 3102996. DOI: 10.1007/bf01191462 (In English)

Schumacher, M., Zhu, X., Guennoun, R. (2017) Progesterone: Synthesis, metabolism, mechanism of action, and effects in the nervous system. In: D. W. Pfaff, M. Joëls (eds.). Hormones, brain and behavior. 3rd ed. Vol. 3. S p.: Academic Press, pp. 215–244. DOI: 10.1016/B978-0-12-803592-4.00054-7 (In English)

Singh, M., Su, C. (2013) Progesterone and neuroprotection. Hormones and Behavior, vol. 63, no. 2, pp. 284–290. PMID: 22732134. DOI: 10.1016/j.yhbeh.2012.06.003 (In English)

Snyder, A. M., Hull, E. M. (1980). Perinatal progesterone affects learning in rats. Psychoneuroendocrinology, vol. 5, no. 2, pp. 113–119. PMID: 7394127. DOI: 10.1016/0306-4530(80)90014-1 (In English)

Studd, J. (2014) Hormone therapy for reproductive depression in women. Post Reproductive Health, vol. 20, no. 4, pp. 132–137. PMID: 25398672. DOI: 10.1177/2053369114557883 (In English)

Tuckey, R. C. (2005) Progesterone synthesis by the human placenta. Placenta, vol. 26, no. 4, pp. 273–281. PMID: 15823613. DOI: 10.1016/j.placenta.2004.06.012 (In English)

Vinogradova, E. P., Zhukov, D. A. (2004) Materinskoe povedenie u krys s razlichnoj strategiej prisposobleniya [Patterns of maternal behavior of rats genetically selected for opposite coping styles]. Zhurnal vysshej nervnoj deyatel’nosti im. I. P. Pavlova — I. P. Pavlov Journal of Higher Nervous Activity, vol. 54, no. 4, pp. 548–553. PMID: 15481393. (In Russian)

Yousuf, S., Brat, D. J., Shu, H.-K. et al. (2017) Progesterone improves neurocognitive outcomes following therapeutic cranial irradiation in mice. Hormones and Behavior, vol. 96, pp. 21–30. PMID: 28866326. DOI: 10.1016/j.yhbeh.2017.08.004 (In English)

Zhukov, D. A., Vinogradova, K. P. (1994) Inescapable shock induces the opposite changes of the plus-maze test behavior in rats with divergent coping strategy. Physiology & Behavior, vol. 56, no. 5, pp. 1075–1079. PMID: 7824574. DOI: 10.1016/0031-9384(94)90346-8 (In English)

Опубликован

2020-06-05

Выпуск

Раздел

Краткие сообщения