Патогенез дыхательной недостаточности при коронавирусной болезни (COVID-19)

Авторы

DOI:

https://doi.org/10.33910/2687-1270-2020-1-4-285-293

Ключевые слова:

COVID-19, SARS-CoV-2, дыхательная недостаточность, острый респираторный дистресс-синдром, цитокиновый шторм

Аннотация

В обзоре представлены результаты экспериментальных и клинических исследований и наблюдений, позволяющие сделать выводы о причинах и механизмах развития острой дыхательной недостаточности при тяжелом течении COVID-19. Приводятся общие сведения о коронавирусе SARS-CoV-2 в сравнении с вирусами MERS-CoV и SARS-CoV. Рассматривается роль ангиотензинпревращающего фермента 2 в патогенезе COVID-19, механизмы развития острого респираторного дистресс-синдрома и гипоксемии, неблагоприятные последствия гиперцитокинемии (цитокинового шторма), предполагаемый нейрогенный механизм дыхательной недостаточности. Подчеркивается, что неблагоприятные процессы, которые происходят в легких больных COVID-19, вызваны не столько прямым действием вируса, сколько гиперреактивностью иммунной системы. Приводятся данные о роли в развитии дыхательной недостаточности при COVID-19 способности SARS-CoV-2 к нейроинвазии, приводящей к распространению инфекции на ствол мозга и структуры дыхательного центра. В заключение на основании литературных данных делается вывод о том, что патогенез дыхательной недостаточности при COVID-19 имеет множественные причины и характеризуется диффузным и экссудативным поражением альвеол, ухудшением вентиляционно-перфузионных отношений, развитием фиброзов, образованием тромбов, гипоксемией. Подчеркивается, что исследование центральных, нейрогенных, механизмов дыхательной недостаточности и анализ их корреляции с неврологическими симптомами способствуют более глубокому пониманию патогенеза COVID-19 и могут иметь существенное значение для профилактики и лечения респираторной недостаточности, вызванной SARS-CoV-2.

Библиографические ссылки

Baig, A. M. (2020) Computing the effects of SARS-CoV-2 on respiration regulatory mechanisms in COVID-19. ACS Chemical Neuroscience, vol. 11, no. 16, pp. 2416–2421. DOI: 10.1021/acschemneuro.0c00349 (In English)

Baig, A. M., Khaleeq, A., Ali, U., Syeda, H. (2020) Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chemical Neuroscience, vol. 11, no. 7, pp. 995−998. DOI: 10.1021/acschemneuro.0c00122 (In English)

Bateneva, T. (2020) Akademik Aleksandr Chuchalin rasskazal “RG” o tajnakh koronavirusa [Academician Alexander Chuchalin told “RG” about the secrets of the coronavirus]. Rossijskaya gazeta, 19 April. [Online]. Available at: https://rg.ru/2020/04/19/nauka-shag-za-shagom-otkryvaet-tajny-koronavirusa.html (accessed 19.04.2020). (In Russian)

Behrens, E. M, Koretzky, G. A. (2017) Review: Cytokine storm syndrome: Looking toward the precision medicine era. Arthritis & Rheumatology, vol. 69, no. 6, pp. 1135–1143. DOI: 10.1002/art.40071 (In English)

Chen, N., Zhou, M., Dong, X. et al. (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, vol. 395, no. 10223, pp. 507–513. DOI: 10.1016/S0140-6736(20)30211-7 (In English)

Chuchalin, A. G. (2004) Tyazhelyj ostryj respiratornyj sindrom [Severe acute respiratory syndrome (SARS)]. Terapevticheskii arhiv — Therapeutic Archive, vol. 79, no. 3, pp. 5–11. (In Russian)

Ding, Y., He, L., Zhang, Q. et al. (2004) Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS‐CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways. Journal of Pathology, vol. 203, no. 2, pp. 622–630. DOI: 10.1002/path.1560 (In English)

Donoghue, M., Hsieh, F., Baronas, E. et al. (2000) A novel angiotensin-converting enzyme‐related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1‐9. Circulation Research, vol. 87, no. 5, pp. e1–e9. DOI: 10.1161/01.res.87.5.e1 (In English)

Eriksson, O., Hultström, M., Persson, B. et al. (2020) Mannose-binding lectin is associated with thrombosis and coagulopathy in critically ill COVID-19 patients. Thrombosis and Haemostasis. DOI: 10.1055/s-0040-1715835 (In English)

Fehr, A. R., Perlman, S. (2015) Coronaviruses: An overview of their replication and pathogenesis. In: H. Maier, E. Bickerton, P. Britton (eds.). Coronaviruses. Methods in molecular biology. Vol. 1282. New York: Humana Press, 23 p. DOI: 10.1007/978-1-4939-2438-7_1 (In English)

Ferrario, C. M., Jessup, J., Chappell, M. C. et al. (2005) Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation, vol. 111, no. 20, pp. 2605–2610. DOI: 10.1161/circulationaha.104.510461 (In English)

Gorbalenya, A. E., Baker, S. C., Baric, R. C. et al. (2020) The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, vol. 5, no. 4, pp. 536–544. DOI: 10.1038/s41564-020-0695-z (In English)

Gu, J., Gong, E., Zhang, B. et al. (2005) Multiple organ infection and the pathogenesis of SARS. Journal of Experimental Medicine, vol. 202, no. 3, pp. 415–424. DOI: 10.1084/jem.20050828 (In English)

Hadziefendic, S., Haxhiu, M. A. (1999) CNS innervation of vagal preganglionic neurons controlling peripheral airways: A transneuronal labeling study using pseudorabies virus. Journal of Autonomic Nerve System, vol. 76, no. 2-3, pp. 135–145. DOI: 10.1016/s0165-1838(99)00020-x (In English)

Hamming, I., Timens, W., Bulthuis, M. L. et al. (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. Journal of Pathology, vol. 203, no. 2, pp. 631–637. DOI: 10.1002/path.1570 (In English)

Harmer, D., Gilbert, M., Borman, R., Clark, K. L. (2002) Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Letters, vol. 532, no. 1-2, pp. 107–110. DOI: 10.1016/ s0014-5793(02)03640-2 (In English)

Huang, C., Wang, Y., Li, X. et al. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, vol. 395, no. 10223, pp. 497–506. DOI: 10.1016/S0140-6736(20)30183-5 (In English)

Imai, Y., Kuba, K., Rao, S. et al. (2005) Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, vol. 436, no. 7047, pp. 112–116. DOI: 10.1038/nature03712 (In English)

Kalia, M, Mesulam, M. M. (1980) Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. Journal of Comparative Neurology, vol. 193, no. 2, pp. 467–508. DOI: 10.1002/cne.901930211 (In English)

Khan, S., Ali, A., Siddique, R., Nabi, G. (2020) Novel coronavirus is putting the whole world on alert. Journal of Hospital Infection, vol. 104, no. 3, pp. 252–253. DOI: 10.1016/j.jhin.2020.01.019 (In English)

Komorowski, M., Aberegg, S. K. (2020) Using applied lung physiology to understand COVID-19 patterns. British Journal of Anaesthesia, vol. 125, no. 3, pp. 250–253. DOI: 10.1016/j.bja.2020.05.019 (In English)

Kuba, K., Imai, Y., Rao, S. et al. (2005) A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine, vol. 11, no. 8, pp. 875–879. DOI: 10.1038/nm1267 (In English)

Lechien, J. R., Chiesa-Estomba, C. M., De Siati, D. R. et al. (2020) Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. European Archive of Oto-Rhino-Laryngology, vol. 277, no. 8, pp. 2251–2261. DOI: 10.1007/s00405-020-05965-1 (In English)

Leonard, E. M., Salman, S., Nurse, C. (2018) Sensory processing and integration at the carotid body tripartite synapse: Neurotransmitter functions and effects of chronic hypoxia. Frontiers in Physiology, vol. 9, article 225. DOI: 10.3389/fphys.2018.00225 (In English)

Li, Y. C., Bai, W. Z., Hashikawa, T. (2020) The neuroinvasive potential of SARS‐CoV2 may play a role in the respiratory failure of COVID‐19 patients. Journal of Medical Virology, vol. 92, no. 6, pp. 552–555. DOI: 10.1002/jmv.25728 (In English)

Li, Y. C., Bai, W. Z., Hirano, N. et al. (2012) Coronavirus infection of rat dorsal root ganglia: Ultrastructural characterization of viral replication, transfer, and the early response of satellite cells. Virus Research, vol. 163, no. 2, pp. 628–635. DOI: 10.1016/j.virusres.2011.12.021 (In English)

Li, Y. C., Bai, W. Z., Hirano, N. et al. (2013) Neurotropic virus tracing suggests a membranous‐coating‐mediated mechanism for transsynaptic communication. Journal of Comparative Neurology, vol. 521, no. 1, pp. 203–212. DOI: 10.1002/cne.23171 (In English)

Manganelli, F., Vargas, M., Iovino, F. et al. (2020) Brainstem involvement and respiratory failure in COVID-19. Neurological Sciences, vol. 41, no. 6, pp. 1663–1665. DOI: 10.1007/s10072-020-04487-2 (In English)

Matsuda, K., Park, C. H., Sunden, Y. et al. (2004) The vagus nerve is one route of transneural invasion for intranasally inoculated influenza a virus in mice. Veterinary Pathology, vol. 41, no. 2, pp. 101–107. DOI: 10.1354/vp.41-2- 101 (In English)

Millan-Oñate, J., Millan, W., Mendoza, L. A. et al. (2020) Successful recovery of COVID-19 pneumonia in a patient from Colombia after receiving chloroquine and clarithromycin. Annals of Clinical Microbiology and Antimicrobials, vol. 19, no. 1, article 16. DOI: 10.1186/s12941-020-00358-y (In English)

Paniz‐Mondolfi, A., Clare Bryce, Z., Grimes, R. E. (2020) Central nervous system involvement by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2). Journal of Medical Virology, vol. 92, no. 7, pp. 699–702. DOI: 10.1002/jmv.25915 (In English)

Román, G. C., Spencer, P. S., Reis, J. et al. (2020) The neurology of COVID-19 revisited: A proposal from the Environmental Neurology Specialty Group of the World Federation of Neurology to implement international neurological registries. Journal of the Neurological Sciences, vol. 414, article 116884. DOI: 10.1016/j.jns.2020.116884 (In English)

Smith, J. C., Ellenberger, H. H., Ballanyi, K. et al. (1991) Pre-Bötzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science, vol. 254, no. 5032, pp. 726−729. DOI: 10.1126/science.1683005 (In English)

Sommerstein, R., Kochen, M. M., Messerli, F. H., Gräni, Ch. (2020) Coronavirus Disease 2019 (COVID-19): Do angiotensin-converting enzyme inhibitors/angiotensin receptor blockers have a biphasic effect? Journal of the American Heart Association, vol. 9, no. 7, article e016509. DOI: 10.1161/JAHA.120.016509 (In English)

Tay, M. Z, Poh, C. M., Rеnia, L. et al. (2020) The trinity of COVID-19: Immunity, inflammation and intervention. Nature Reviews Immunology, vol. 20, no. 6, pp. 363–374. DOI: 10.1038/s41577-020-0311-8 (In English)

Wong, J. P., Viswanathan, S., Wang, M. et al. (2017) Current and future developments in the treatment of virus-induced hypercytokinemia. Future Medicinal Chemistry, vol. 9, no. 2, pp. 169–178. DOI: 10.4155/fmc-2016-0181 (In English)

Wu, Y., Xu, X., Chen, Z. et al (2020) Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain, Behavior, and Immunity, vol. 87, pp. 18–22. DOI: 10.1016/j.bbi.2020.03.031 (In English)

Xu, J., Zhong, S., Liu, J. et al. (2005) Detection of severe acute respiratory syndrome coronavirus in the brain: Potential role of the chemokine mig in pathogenesis. Clinical Infectious Diseases, vol. 41, no. 8, pp. 1089–1096. DOI: 10.1086/444461 (In English)

Yang, G., Tan, Z., Zhou, L. et al. (2020) Effects of angiotensin II receptor blockers and ace (angiotensin-converting enzyme) inhibitors on virus infection, inflammatory status, and clinical outcomes in patients with COVID-19 and hypertension: A single-center retrospective study. Hypertension, vol. 76, no. 1, pp. 51–58. DOI: 10.1161/HYPERTENSIONAHA.120.15143 (In English)

Yu, F., Du, L., Ojcius, D. M. et al. (2020) Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes and Infection, vol. 22, no. 2, pp. 74–79. DOI: 10.1016/j.micinf.2020.01.003 (In English)

Загрузки

Опубликован

28.12.2020

Выпуск

Раздел

Обзоры