Участие ванилоидных рецепторов 1 типа в защитных и патологических механизмах в желудке при действии ульцерогенных стимулов

Авторы

  • Наталья Ильинична Ярушкина Институт физиологии им. И. П. Павлова РАН
  • Татьяна Трофимовна Подвигина Институт физиологии им. И. П. Павлова РАН
  • Людмила Павловна Филаретова Институт физиологии им. И. П. Павлова РАН

DOI:

https://doi.org/10.33910/2687-1270-2021-2-2-147-156

Ключевые слова:

ванилоидные рецепторы 1 типа, капсаицин-чувствительные афферентные нейроны, сенситизация, десенситизация, индометацин

Аннотация

Ванилоидные рецепторы 1 типа (TRPV1— transient receptor potential vanilloid 1) играют ключевую роль в ноцицепции, а также в воспалении, и являются терапевтической «мишенью» для лечения как хронической боли, так и ряда других патологических состояний, среди которых онкологические и сердечно-сосудистые заболевания, ожирение, диабет, воспаление кишечника. TRPV1-рецепторы, основным агонистом которых является капсаицин, экспрессируются в нервных волокнах капсаицин-чувствительных афферентных нейронов (КЧН). КЧН вовлекаются в поддержание целостности слизистой оболочки желудка при действии ульцерогенных стимулов. КЧН рассматриваются как «система тревоги», обеспечивающая быстрый запуск гастропротективных механизмов. Активация КЧН осуществляется через TRPV1-рецепторы. В настоящем обзоре проанализированы данные о вовлечении КЧН и TRPV1-рецепторов как в защитные, так и в патологические механизмы в желудке в условиях действия ульцерогенных стимулов. Особое внимание уделено сравнению экспериментальных данных, полученных с помощью различных подходов, включающих активацию и выключение из функционирования TRPV1-рецепторов. Обсуждены данные о взаимодействии КЧН и глюкокортикоидных гормонов в поддержании целостности слизистой оболочки желудка. Результаты, полученные авторами, свидетельствуют о вовлечении глюкокортикоидных гормонов в реализацию гастропротективного действия КЧН, а также демонстрируют компенсаторную защитную роль данных гормонов в поддержании целостности слизистой оболочки желудка в условиях выключения из функционирования КЧН.

Библиографические ссылки

Akiba, Y., Takeuchi, T., Mizumori, M. et al. (2006) TRPV-1 knockout paradoxically protects mouse gastric mucosa from acid/ethanol-induced injury by upregulating compensatory protective mechanisms. Gastroenterology, vol. 130, no. 4 (suppl. 2), article A-106. https://doi.org/10.1016/S0016-5085(06)60008-5 (In English)

Balemans, D., Boeckxstaens, G. E., Talavera, K., Wouters, M. M. (2017) Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity. American Journal of Physiology. Gastrointestinal and Liver Physiology, vol. 312, no. 6, pp. G635–G648. https://www.doi.org/10.1152/ajpgi.00401.2016 (In English)

Basharat, S., Gilani, S. A., Iftikhar, F. et al. (2020) Capsaicin: Plants of the genus capsicum and positive effect of oriental spice on skin health. Skin Pharmacology and Physiology, vol. 33, no. 6, pp. 331–341. https://www.doi.org/10.1159/000512196 (In English)

Basith, S., Cui, M., Hong, S., Choi, S. (2016) Harnessing the therapeutic potential of capsaicin and its analogues in pain and other diseases. Molecules, vol. 21, no. 8, article 966. https://www.doi.org/10.3390/molecules21080966 (In English)

Beckers, A. B., Weerts, Z. Z. R. M., Helyes, Z. et al. (2017) Review article: Transient receptor potential channels as possible therapeutic targets in irritable bowel syndrome. Alimentary Pharmacology and Therapeutics, vol. 46, no. 10, pp. 938–952. https://www.doi.org/10.1111/apt.14294 (In English)

Birklein, F., Schmelz, M. (2008) Neuropeptides, neurogenic inflammation and complex regional pain syndrome (CRPS). Neuroscience Letters, vol. 437, no. 3, pp. 199–202. https://www.doi.org/10.1016/j.neulet.2008.03.081 (In English)

Bobryshev, P., Bagaeva, T., Filaretova, L. (2005) Gastroprotective action of glucocorticoid hormones in rats with desensitization of capsaicin-sensitive sensory neurons. InflammoPharmacology, vol. 13, no. 1-3, pp. 217–228. https://www.doi.org/10.1163/156856005774423782 (In English)

Bölcskei, K., Helyes, Z., Szabó, Á. (2005) Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene-deficient mice. Pain, vol. 117, no. 3, pp. 368–376. https://www.doi.org/10.1016/j.pain.2005.06.024 (In English)

Brito, R., Sheth, S., Mukherjea, D. et al. (2014) TRPV1: A potential drug target for treating various diseases. Cells, vol. 3, no. 2, pp. 517–545. https://www.doi.org/10.3390/cells3020517 (In English)

Caterina, M. J., Leffler, A., Malmberg, A. B. et al. (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science, vol. 288, no. 5464, pp. 306–313. https://www.doi.org/10.1126/science.288.5464.306 (In English)

Caterina, M. J., Schumacher, M. A., Tominaga, M. et al. (1997) The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature, vol. 389, no. 6653, pp. 816–824. https://www.doi.org/10.1038/39807 (In English)

Chu, Y. Y., Qiu, P. J., Yu, R. L. (2020) Centipede venom peptides acting on ion channels. Toxins, vol. 12, no. 4, article 230. https://www.doi.org/10.3390/toxins12040230 (In English)

Csekő, K., Beckers, B., Keszthelyi, D., Helyes, Z. (2019) Role of TRPV1 and TRPA1 ion channels in inflammatory bowel diseases: Potential therapeutic targets? Pharmaceuticals, vol. 12, no. 2, article 48. https://www.doi.org/10.3390/ph12020048 (In English)

Czekaj, R., Majka, J., Magierowska, K. et al. (2018) Mechanisms of curcumin-induced gastroprotection against ethanol-induced gastric mucosal lesions. Journal of Gastroenterology, vol. 53, no. 5, pp. 618–630. https://www.doi.org/10.1007/s00535-017-1385-3 (In English)

Du, Q., Liao, Q., Chen, C. et al. (2019) The role of transient receptor potential vanilloid 1 in common diseases of the digestive tract and the cardiovascular and respiratory system. Frontiers in Physiology, vol. 10, article 1064. https://www.doi.org/10.3389/fphys.2019.01064 (In English)

Fattori, V., Hohmann, M. S. N., Rossaneis, A. C. et al. (2016) Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules, vol. 21, no. 7, article 844. https://www.doi.org/10.3390/molecules21070844 (In English)

Ferrini, F., Salio, C., Lossi, L. et al. (2010) Modulation of inhibitory neurotransmission by the vanilloid receptor type 1 (TRPV1) in organotypically cultured mouse substantia gelatinosa neurons. Pain, vol. 150, no. 1, pp. 128–140. https://www.doi.org/10.1016/j.pain.2010.04.016 (In English)

Filaretova, L. (2013) Gastroprotective role of glucocorticoids during NSAID-induced gastropathy. Current Pharmaceutical Design, vol. 19, no. 1, pp. 29–33. https://www.doi.org/10.2174/13816128130106 (In English)

Filaretova, L., Bobryshev, P., Bagaeva, T. et al. (2007a) Compensatory gastroprotective role of glucocorticoid hormones during inhibition of prostaglandin and nitric oxide production and desensitization of capsaicin-sensitive sensory neurons. Inflammopharmacology, vol. 15, no. 4, pp. 146–153. https://www.doi.org/10.1007/s10787-007-1589-x (In English)

Filaretova, L. P., Filaretov, A. A., Makara, G. B. (1998) Corticosterone increase inhibits stress-induced gastric erosions in rats. The American Journal of Physiology — Gastrointestinal and Liver Physiology, vol. 274, no. 6, pp. G1024–G1030. https://www.doi.org/10.1152/ajpgi.1998.274.6.G1024 (In English)

Filaretova, L., Podvigina, T., Bagaeva, T. et al. (2007b) Gastroprotective role of glucocorticoid hormones. Journal of Pharmacological Sciences, vol. 104, no. 3, pp. 195–201. https://www.doi.org/10.1254/jphs.cp0070034 (In English)

Filaretova, L., Podvigina, T., Yarushkina, N. (2020) Physiological and pharmacological effects of glucocorticoids on the gastrointestinal tract. Current Pharmaceutical Design, vol. 26, no. 25, pp. 2962–2970. https://www.doi.org/10.2174/1381612826666200521142746 (In English)

Filaretova, L., Tanaka, A., Miyazawa, T. et al. (2002) Mechanisms by which endogenous glucocorticoid protects against indomethacin-induced gastric injury in rats. American Journal of Physiology — Gastrointestinal and Liver Physiology, vol. 283, no. 5, pp. G1082–G1089. https://www.doi.org/10.1152/ajpgi.00189.2002 (In English)

Fischer, M. J. M., Ciotu, C. I., Szallasi, A. (2020) The mysteries of capsaicin-sensitive afferents. Frontiers in Physiology, vol. 11, article 554195. https://www.doi.org/10.3389/fphys.2020.554195 (In English)

Fujino, K., de la Fuente, S. G., Takami, Y., Mantyh, C. R. (2006) Attenuation of acid induced oesophagitis in VR-1 deficient mice. Gut, vol. 55, no. 1, pp. 34–40. https://www.doi.org/10.1136/gut.2005.066795 (In English)

Fukushima, K., Aoi, Y., Kato, S., Takeuchi, K. (2006) Gastro-protective action of lafutidine mediated by capsaicin-sensitive afferent neurons without interaction with TRPV1 and involvement of endogenous prostaglandins. World Journal of Gastroenterology, vol. 12, no. 19, pp. 3031–3037. https://www.doi.org/10.3748/wjg.v12.i19.3031 (In English)

Gazzieri, D., Trevisani, M., Springer, J. et al. (2007) Substance P released by TRPV1-expressing neurons produces reactive oxygen species that mediate ethanol-induced gastric injury. Free Radical Biology and Medicine, vol. 43, no. 4, pp. 581–589. https://www.doi.org/10.1016/j.freeradbiomed.2007.05.018 (In English)

Han, T., Tang, Y., Li, J. et al. (2017) Nitric oxide donor protects against acetic acid-induced gastric ulcer in rats via S-nitrosylation of TRPV1 on vagus nerve. Scientific Reports, vol. 7, no. 1, article 2063. https://www.doi.org/10.1038/s41598-017-02275-1 (In English)

Holzer, P. (1998) Neural emergency system in the stomach. Gastroenterology, vol. 114, no. 4, pp. 823–839. https://www.doi.org/10.1016/S0016-5085(98)70597-9 (In English)

Holzer, P. (2011) Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacology and Therapeutics, vol. 131, no. 1, pp. 142–170. https://www.doi.org/10.1016/j.pharmthera.2011.03.006 (In English)

Holzer, P., Maggi, C. A. (1998) Dissociation of dorsal root ganglion neurons into afferent and efferent-like neurons. Neuroscience, vol. 86, no. 2, pp. 389–398. https://www.doi.org/10.1016/S0306-4522(98)00047-5 (In English)

Holzer, P., Pabst, M. A., Lippe, I. T. et al. (1990) Afferent nerve-mediated protection against deep mucosal damage in the rat stomach. Gastroenterology, vol. 98, no. 4, pp. 838–848. https://www.doi.org/10.1016/0016-5085(90)90005-L (In English)

Horie, S., Michael, G. J., Priestley, J. V. (2005) Co-localization of TRPV1-expressing nerve fibers with calcitonin-gene- related peptide and substance P in fundus of rat stomach. Inflammopharmacology, vol. 13, no. 1-3, pp. 127–137. https://www.doi.org/10.1163/156856005774423854 (In English)

Horie, S., Yamamoto, H., Michael, G. J. et al. (2004) Protective role of vanilloid receptor type 1 in HCL-induced gastric mucosal lesions in rats. Scandinavian Journal of Gastroenterology, vol. 39, no. 4, pp. 303–312. https://www.doi.org/10.1080/00365520310008647 (In English)

Ilie, M. A., Caruntu, C., Tampa, M. et al. (2019) Capsaicin: Physicochemical properties, cutaneous reactions and potential applications in painful and inflammatory conditions. Experimental and Therapeutic Medicine, vol. 18, no. 2, pp. 916–925. https://www.doi.org/10.3892/etm.2019.7513 (In English)

Jancsó, N., Jancsó-Gábor, A., Szolcsányi, J. (1967) Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. British Journal of Pharmacology and Chemotherapy, vol. 31, no. 1, pp. 138–151. https://www.doi.org/10.1111/j.1476-5381.1967.tb01984.x (In English)

Kato, S., Aihara, E., Nakamura, A. et al. (2003) Expression of vanilloid receptors in rat gastric epithelial cells: Role in cellular protection. Biochemical Pharmacology, vol. 66, no. 6, pp. 1115–1121. https://www.doi.org/10.1016/S0006-2952(03)00461-1 (In English)

Lee, S. S., Sohn, Y. W., Yoo, E. S., Kim, K. H. (1991) Neurotoxicity and long lasting analgesia induced by capsaicinoids. The Journal of Toxicological Sciences, vol. 16, suppl. I, pp. 3–20. https://www.doi.org/10.2131/jts.16.supplementi_3 (In English)

Magierowska, K., Wojcik, D., Chmura, A. et al. (2018) Alterations in gastric mucosal expression of calcitonin gene-related peptides, vanilloid receptors, and heme oxygenase-1 mediate gastroprotective action of carbon monoxide against ethanol-induced gastric mucosal lesions. International Journal of Molecular Sciences, vol. 19, no. 10, article 2960. https://www.doi.org/10.3390/ijms19102960 (In English)

Mózsik, G., Szolcsányi, J., Dömötör, A. (2007) Capsaicin research as a new tool to approach of the human gastrointestinal physiology, pathology and pharmacology. Inflammopharmacology, vol. 15, no. 6, pp. 232–245. https://www.doi.org/10.1007/s10787-007-1584-2 (In English)

Mózsik, G., Szolcsányi, J., Rácz, I. (2005) Gastroprotection induced by capsaicin in healthy human subjects. World Journal of Gastroenterology, vol. 11, no. 33, pp. 5180–5184. PMID: 16127749. (In English)

Mózsik, G., Vincze, Á., Szolcsányi, J. (2001) Four response stages of capsaicin-sensitive primary afferent neurons to capsaicin and its analog: Gastric acid secretion, gastric mucosal damage and protection. Journal of Gastroenterology and Hepatology, vol. 16, no. 10, pp. 1093–1097. https://www.doi.org/10.1046/j.1440-1746.2001.02598.x (In English)

Panchal, S. K., Bliss, E., Brown, L. (2018) Capsaicin in metabolic syndrome. Nutrients, vol. 10, no. 5, article 630. https://www.doi.org/10.3390/nu10050630 (In English)

Peng, J., Li, Y.-J. (2010) The vanilloid receptor TRPV1: Role in cardiovascular and gastrointestinal protection. European Journal of Pharmacology, vol. 627, no. 1-3, pp. 1–7. https://www.doi.org/10.1016/j.ejphar.2009.10.053 (In English)

Pethő, G., Bölcskei, K., Füredi, R. et al. (2017) Evidence for a novel, neurohumoral antinociceptive mechanism mediated by peripheral capsaicin-sensitive nociceptors in conscious rats. Neuropeptides, vol. 62, pp. 1–10. https://www.doi.org/10.1016/j.npep.2017.02.079 (In English)

Podvigina, T. T., Morozova, O. Yu., Solnushkin, S. D. et al. (2019) Vliyanie sensitizatsii i desensitizatsii kapsaitsin-chuvstvitel’nykh nejronov na obrazovanie erozij v slizistoj obolochke zheludka, indutsirovannykh indometatsinom, u krys: rol’ glyukokortikoidnykh gormonov [Effect of sensitization and desensitization of capsaicin-sensitive neurons on the formation of gastric erosions induced by indomethacin in rats: The role of glucocorticoids]. Rossijskij fiziologicheskij zhurnal im. I. M. Sechenova — Russian Journal of Physiology, vol. 105, no. 2, pp. 225–237. https://doi.org/10.1134/S0869813919020080 (In Russian)

Satyanarayana, M. N. (2006) Capsaicin and gastric ulcers. Critical Reviews in Food Science and Nutrition, vol. 46, no. 4, pp. 275–328. https://www.doi.org/10.1080/1040-830491379236 (In English)

Silverman, H. A., Chen, A., Kravatz, N. L. et al. (2020) Involvement of neural transient receptor potential channels in peripheral inflammation. Frontiers in Immunology, vol. 11, article 590261. https://www.doi.org/10.3389/fimmu.2020.590261 (In English)

Simone, D. A., Ngeow, J. Y. F., Putterman, G. J., LaMotte, R. H. (1987) Hyperalgesia to heat after intradermal injection of capsaicin. Brain Research, vol. 418, no. 1, pp. 201–203. https://www.doi.org/10.1016/0006-8993(87)90982-6 (In English)

Szabados, T., Gömöri, K., Pálvölgyi, L. et al. (2020) Capsaicin-sensitive sensory nerves and the TRPV1 ion channel in cardiac physiology and pathologies. International Journal of Molecular Sciences, vol. 21, no. 12, article 4472. https://www.doi.org/10.3390/ijms21124472 (In English)

Szallasi, A., Blumberg, P. M. (1999) Vanilloid (Capsaicin) receptors and mechanisms. Pharmacological Reviews, vol. 51, no. 2, pp. 159–212. PMID: 10353985. (In English)

Szolcsányi, J. (2008) Hot target on nociceptors: Perspectives, caveats and unique features. British Journal of Pharmacology, vol. 155, no. 8, pp. 1142–1144. https://www.doi.org/10.1038/bjp.2008.374 (In English)

Szolcsányi, J., Barthó, L. (2001) Capsaicin-sensitive afferents and their role in gastroprotection: An update. Journal of Physiology-Paris, vol. 95, no. 1-6, pp. 181–188. https://www.doi.org/10.1016/S0928-4257(01)00023-7 (In English)

Szolcsányi, J., Pintér, E., Helyes, Z., Pethő, G. (2011) Inhibition of the function of TRPV1-expressing nociceptive sensory neurons by somatostatin 4 receptor agonism: Mechanism and therapeutical implications. Current Topics in Medicinal Chemistry, vol. 11, no. 17, pp. 2253–2263. https://www.doi.org/10.2174/156802611796904852 (In English)

Tominaga, M., Caterina, M. J., Malmberg, A. B. et al. (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron, vol. 21, no. 3, pp. 531–543. https://www.doi.org/10.1016/S0896-6273(00)80564-4 (In English)

Ward, S. M., Bayguinov, J., Won, K.-J. et al. (2003) Distribution of the vanilloid receptor (VR1) in the gastrointestinal tract. The Journal of Comparative Neurology, vol. 465, no. 1, pp. 121–135. https://www.doi.org/10.1002/cne.10801 (In English)

Yang, M. H., Jung, S. H., Sethi, G., Ahn, K. S. (2019) Pleiotropic pharmacological actions of capsazepine, a synthetic analogue of capsaicin, against various cancers and inflammatory diseases. Molecules, vol. 24, no. 5, article 995. https://www.doi.org/10.3390/molecules24050995 (In English)

Yarushkina, N. I., Sudalina, M. N., Punin, Y. M., Filaretova, L. P. (2018) Vulnerability of gastric and small intestinal mucosa to ulcerogenic action of indomethacin in C57/BL6/J mice and transient receptor potential channel vanilloid type 1 knockout mice. Journal of Physiology and Pharmacology, vol. 69, no. 6, pp. 951–961. https://www.doi.org/10.26402/jpp.2018.6.09 (In English)

Опубликован

28.06.2021

Выпуск

Раздел

Обзоры