Организация некодирующих элементов в геномах птиц
DOI:
https://doi.org/10.33910/2687-1270-2022-3-2-185-203Ключевые слова:
организация генома, некодирующие ДНК, повторяющиеся последовательности, гетерохроматин, повторы высокого порядкаАннотация
Обзор посвящен характеристике некодирующих элементов в геномах птиц. Как и большинство живых организмов, птицы в своем геноме несут значительное количество некодирующих последовательностей, которые, по формальным причинам, не могут быть отнесены к категории генов. Традиционно к таким элементам принято относить участки ДНК, выполняющие структурные функции, которые отличаются высоким уровнем консерватизма, а также значительное количество последовательностей, в том числе повторяющихся элементов, функции которых до сих пор не выяснены. В контексте общей характеристики тандемных повторяющихся элементов в геномах птиц особое внимание уделено различиям в количестве копий отдельных повторяющихся элементов. Интересно, что это непосредственно коррелирует с сокращением размеров геномов у птиц. В обзоре подробно описано участие повторяющихся последовательностей в структурной и функциональной организации центромерных и теломерных районов с акцентом на особенности организации перицентромерного и субтеломерного гетерохроматина и их отличия от собственно центромерных и теломерных последовательностей. Данные о распространенности в геномах птиц различных повторов и особенностях их организации соотнесены с уровнем их консерватизма и ролью в поддержании структурной и функциональной организации генома.
Библиографические ссылки
Abe, H., Gemmell, N. J. (2014) Abundance, arrangement, and function of sequence motifs in the chicken promoters. BMC Genomics, vol. 15, article 900. https://doi.org/10.1186/1471-2164-15-900 (In English)
Aldrup-Macdonald, M. E., Kuo, M. E., Sullivan, L. L. et al. (2016) Genomic variation within alpha satellite DNA influences centromere location on human chromosomes with metastable epialleles. Genome Research, vol. 26, no. 10, pp. 1301–1311. https://doi.org/10.1101/gr.206706.116 (In English)
Andersson, L., Archibald, A. L., Bottema, C. D. et al. (2015) Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project. Genome Biology, vol. 16, no. 1, article 57. https://doi.org/10.1186/s13059-015-0622-4 (In English)
Bellott, D. W., Skaletsky, H., Cho, T. J. et al. (2017) Avian W and mammalian Y chromosomes convergently retained dosage–sensitive regulators. Nature Genetics, vol. 49, no. 3, pp. 387–394. https://doi.org/10.1038/ng.3778 (In English)
Bergmann, J. H., Rodriguez, M. G., Martins, N. M. et al. (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO Journal, vol. 30, no. 2, pp. 328–340. https://doi.org/10.1038/emboj.2010.329 (In English)
Bertocchi, N. A., Torres, F. P., del Valle Garnero, A. et al. (2017) Evolutionary history of the mariner element galluhop in avian genomes. Mobile DNA, vol. 8, article 11. https://doi.org/10.1186/s13100-017-0094-z (In English)
Biscotti, M. A., Canapa, A., Forconi, M. et al. (2015) Transcription of tandemly repetitive DNA: Functional roles. Chromosome Research, vol. 23, no. 3, pp. 463–477. https://doi.org/10.1007/s10577-015-9494-4 (In English)
Blasco, M. A. (2007) The epigenetic regulation of mammalian telomeres. Nature Reviews Genetics, vol. 8, no. 4, pp. 299–309. https://doi.org/10.1038/nrg2047 (In English)
Bolshakova, E. V., Saifitdinova, A. F. (2020) Poisk genov-kandidatov na rol’ mishenej regulyatsii polovoj differentsirovki u kuritsy [The search for candidate genes to be targeted for regulation of sex differentiation in chicken]. Geny i kletki — Genes and Cells, vol. 15, no. 3, p. 127. (accessed 05.03.2022). (In Russian)
Calderon, M., Rey, M., Cabrera, A. et al. (2015) The subtelomeric region is important for chromosome recognition and pairing during meiosis. Scientific Reports, vol. 4, article 6488. https://doi.org/10.1038/srep06488 (In English)
Capper, R., Britt-Compton, B., Tankimanova, M. et al. (2007) The nature of telomere fusion and a definition of the critical telomere length in human cells. Genes and Development, vol. 21, no. 19, pp. 2495–2508. https://doi.org/10.1101/gad.439107 (In English)
Casanova, M., Pasternak, M., el Marjou, F. et al. (2013) Heterochromatin reorganization during early mouse development requires a single-stranded noncoding transcript. Cell Report, vol. 4, no. 6, pp. 1156–1167. https://doi.org/10.1016/j.celrep.2013.08.015 (In English)
Coullin, P., Bed’Hom, B., Candelier, J. J. et al. (2005) Cytogenetic repartition of chicken CR1 sequences evidenced by PRINS in Galliformes and some other birds. Chromosome Research, vol. 13, no. 7, pp. 665–673. https://doi.org/10.1007/s10577-005-1004-7 (In English)
Craig, J. M., Earnshaw, W. C., Vagnarelli, P. (1999) Mammalian centromeres: DNA sequence, protein composition, and role in cell cycle. Experimental Cell Research, vol. 246, no. 2, pp. 249–262. https://doi.org/10.1006/excr.1998.4278 (In English)
Cui, J., Zhao, W., Huang, Z. et al. (2014) Low frequency of paleoviral infiltration across the avian phylogeny. Genome Biology, vol. 15, no. 12, article 539. https://doi.org/genomebiology.com/2014/15/12/539 (In English)
Delany, M. E., Daniels, L. M., Swanberg, S. E. et al. (2003) Telomeres in the chicken: Genome stability and chromosome ends. Poultry Science, vol. 82, no. 6, pp. 917–926. https://doi.org/10.1093/ps/82.6.917 (In English)
Delany, M. E., Gessaro T. M., Rodrigues, K. L. et al. (2007) Chromosomal mapping of chicken mega-telomere arrays to GGA9, 16, 28 and W using a cytogenomic approach. Cytogenetic and Genome Research, vol. 117, no. 1, pp. 54–63. https://doi.org/10.1159/000103165 (In English)
Deryusheva, S., Krasikova, A., Kulikova, T. et al. (2007) Tandem 41–bp repeats in chicken and Japanese quail genomes: FISH mapping and transcription analysis on lampbrush chromosomes. Chromosoma, vol. 116, no. 6, pp. 519–530. https://doi.org/10.1007/s00412-007-0117-5 (In English)
Dorshorst, B., Harun-Or-Rashid, M., Bagherpoor, A. J. et al. (2015) A genomic duplication is associated with ectopic eomesodermin expression in the embryonic chicken comb and two duplexcomb phenotypes. PLOS Genetics, vol. 11, no. 3, article e1004947. https://doi.org/10.1371/journal.pgen.1004947 (In English)
Enukashvily, N. I., Ponomartsev, N. V. (2013) Mammalian satellite DNA: A speaking dumb. Advances in Protein Chemistry and Structural Biology, vol. 90, pp. 31–65. https://doi.org/10.1016/B978-0-12-410523-2.00002-X (In English)
Galkina, S., Lukina, N., Zakharova, K. et al. (2005) Interstitial (TTAGGG)n sequences are not hot spots of recombination in the chicken lampbrush macrochromosomes 1–3. Chromosome Research, vol. 13, no. 6, pp. 551–557. https://doi.org/10.1007/s10577-005-0980-y (In English)
Gonzalo, S., Jaco, I., Fraga, M. F. et al. (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nature Cell Biology, vol. 8, no. 4, pp. 416–424. https://doi.org/10.1038/ncb1386 (In English)
Griffin, D. K., Robertson, L. B., Tempest, H. G. et al. (2008) Whole genome comparative studies between chicken and turkey and their implications for avian genome evolution. BMC Genomics, vol. 9, article 168. https://doi.org/10.1186/1471-2164-9-168 (In English)
Guin, K., Sreekumar, L., Sanyal, K. (2020) Implications of the Evolutionary Trajectory of Centromeres in the Fungal Kingdom. Annual Review of Microbiology, vol. 74, pp. 835–853. https://doi.org/10.1146/annurev-micro-011720-122512 (In English)
Haas, N. B., Grabowski, J. M., Sivitz, A. B. et al. (1997) Chicken Repeat 1 (CR1) elements, which define an ancient family of vertebrate non-LTR retrotransposons, contain two closely spaced open reading frames. Gene, vol. 197, no. 1–2, pp. 305–309. https://doi.org/10.1016/s0378-1119(97)00276-x (In English)
Hori, T., Shang, W.-H., Toyoda, A. et al. (2014) Histone H4 Lys 20 monomethylation of the CENP-A nucleosome is essential for kinetochore assembly. Developmental Cell, vol. 29, no. 6, pp. 740–749. https://doi.org/10.1016/j.devcel.2014.05.001 (In English)
Ishishita, S., Tsuruta, Y., Uno, Y. et al. (2014) Chromosome size-correlated and chromosome size-uncorrelated homogenization of centromeric repetitive sequences in New World quails. Chromosome Research, vol. 22, no. 1, pp. 15–34. https://doi.org/10.1007/s10577-014-9402-3 (In English)
Itoh, Y., Arnold, A. P. (2005) Chromosomal polymorphism and comparative painting analysis in the zebra finch. Chromosome Research, vol. 13, no. 1, pp. 47–56. https://doi.org/10.1007/s10577-005-6602-x (In English)
Itoh, Y., Kampf, K., Arnold, A. P. (2006) Comparison of the chicken and zebra finch Z chromosomes shows evolutionary rearrangements. Chromosome Research, vol. 14, no. 8, pp. 805–815. https://doi.org/10.1007/s10577-006-1082-1 (In English)
Itoh, Y., Kampf, K., Arnold, A. P. (2008) Molecular cloning of zebra finch W chromosome repetitive sequences: Evolution of the avian W chromosome. Chromosoma, vol. 117, no. 2, pp. 111–121. https://doi.org/10.1007/s00412-007-0130-8 (In English)
Itoh, Y., Mizuno, S. (2002) Molecular and cytological characterization of SspI-family repetitive sequence on the chicken W chromosome. Chromosome Research, vol. 10, no. 6, pp. 499–511. https://doi.org/10.1023/a:1020944414750 (In English)
Ivanova, N. G., Stefanova, V. N., Ostromyshenskii, D. I. et al. (2019) Tandem repeats in the genome of Sus scrofa, their localization on chromosomes and in the spermatogenic cell nuclei. Russian Journal of Genetics, vol. 55, no. 7, pp. 835–846. https://doi.org/10.1134/S0016675819070075 (In English)
John, St. J., Quinn, T. W. (2008) Identification of novel CR1 subfamilies in an avian order with recently active elements. Molecular Phylogenetics and Evolution, vol. 49, no. 3, pp. 1008–1014. https://doi.org/10.1016/j.ympev.2008.09.020 (In English)
Kapusta, A., Suh, A. (2017) Evolution of bird genomes—a transposons-eye view. Annals of the New York Academy of Sciences, vol. 1389, no. 1, pp. 164–185. https://doi.org/10.1111/nyas.13295 (In English)
Kar, A., Jones, N., Arat, N. Ö. et al. (2018) Long repeating (TTAGGG)n single-stranded DNA self-condenses into compact beaded filaments stabilized by G-quadruplex formation. Journal of Biological Chemistry, vol. 293, no. 24, pp. 9473–9485. https://doi.org/10.1074/jbc.RA118.002158 (In English)
Klein, S. J., O’Neill, R. J. (2018) Transposable elements: Genome innovation, chromosome diversity, and centromere conflict. Chromosome Research, vol. 26, no. 1–2, pp. 5–23. https://doi.org/10.1007/s10577-017-9569-5 (In English)
Kodama, H., Saitoh, H., Tone, M. et al. (1987) Nucleotide sequences and unusual electrophoretic behavior of the W chromosome-specific repeating DNA units of the domestic fowl, Gallus gallus domesticus. Chromosoma, vol. 96, no. 1, pp. 18–25. https://doi.org/10.1007/BF00285878 (In English)
Komissarov, A. S., Galkina, S. A., Koshel, E. I. et al. (2018) New high copy tandem repeat in the content of the chicken W chromosome. Chromosoma, vol. 127, no. 1, pp. 73–83. https://doi.org/10.1007/s00412-017-0646-5 (In English)
Krasikova, A., Deryusheva, S., Galkina, S. et al. (2006) On the positions of centromeres in chicken lampbrush chromosomes. Chromosome Research, vol. 14, no. 7, pp. 777–789. https://doi.org/10.1007/s10577-006-1085-y (In English)
Krasikova, A. V., Vasilevskaya, E. V., Gaginskaya, E. R. (2010) Chicken lampbrush chromosomes: Transcription of tandemly repetitive DNA sequences. Russian Journal of Genetics, vol. 46, no. 10, pp. 1173–1177. https://doi.org/10.1134/S1022795410100078 (In English)
Kretschmer, R., de Oliveira, T. D., de Oliveira Furo, I. et al. (2018) Repetitive DNAs and shrink genomes: A chromosomal analysis in nine Columbidae species (Aves, Columbiformes). Genetics and Molecular Biology, vol. 41, no. 1, pp. 98–106. https://doi.org/10.1590/1678-4685-GMB-2017-0048 (In English)
Kulak, M., Dyomin, A., Komissarov, A. et al. (2018) New pericentromeric repeat identified in the genome of Japanese quail. Comparative Cytogenetics, vol. 12, no. 3, pp. 337–338. https://doi.org/10.3897/CompCytogen.v12i3.27748 (In English)
Lawal, R. A., Al-Atiyat, R. M., Aljumaah, R. S. et al. (2018) Whole-genome resequencing of red junglefowl and indigenous village chicken reveal new insights on the genome dynamics of the species. Frontiers in Genetics, vol. 9, article 264. https://doi.org/10.3389/fgene.2018.00264 (In English)
Li, J., Wang, X., Leung, F. C. (2007) The intragenomic polymorphism of a partially inverted repeat (PIR) in Gallus gallus domesticus, potential role of inverted repeats in satellite DNAs evolution. Gene, vol. 387, no. 1–2, pp. 118–125. https://doi.org/10.1016/j.gene.2006.08.033 (In English)
Liangouzov, I. A., Derjusheva, S. E., Saifitdinova, A. F. et al. (2002) Monomers of a satellite DNA sequence of chaffinch (Fringilla coelebs L., Aves: Passeriformes) contain short clusters of the TTAGGG repeat. Russian Journal of Genetics, vol. 38, no. 12, pp. 1359–1364. https://doi.org/10.1023/A:1021679520236 (In English)
Liu, G. E., Jiang, L., Tian, F. et al. (2009) Calibration of mutation rates reveals diverse subfamily structure of galliform CR1 repeats. Genome Biology and Evolution, vol. 1, pp. 119–130. https://doi.org/10.1093/gbe/evp014 (In English)
Lobanenkov, V. V., Nicolas, R. H., Adler, V. V. et al. (1990) A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5’-flanking sequence of the chicken c-myc gene. Oncogene, vol. 5, no. 12, pp. 1743–1753. https://pubmed.ncbi.nlm.nih.gov/2284094/ (In English)
Madsen, C. S., de Kloet, D. H., Brooks, J. E. et al. (1992) Highly Repeated DNA sequences in birds: The structure and evolution of an abundant, tandemly repeated 190-bp DNA fragment in parrots. Genomics, vol. 14, no. 2, pp. 462–469. https://doi.org/10.1016/s0888-7543(05)80242-3 (In English)
Maroteaux, L., Heilig, R., Dupret, D. et al. (1983) Repetitive satellite-like sequences are present within or upstream from 3 avian protein-coding genes. Nucleic Acids Research, vol. 11, no. 5, pp. 1227–1243. https://doi.org/10.1093/nar/11.5.1227 (In English)
Masumoto, H., Masukata, H., Muro, Y. et al. (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. Journal of Cell Biology, vol. 109, no. 5, pp. 1963–1973. https://doi.org/10.1083/jcb.109.5.1963 (In English)
Matzke, M. A., Varga, F., Berger, H. et al. (1990) A 41–42 bp tandemly repeated sequence isolated from nuclear envelopes of chicken erythrocytes is located predominantly on microchromosomes. Chromosoma, vol. 99, no. 2, pp. 131–137. https://doi.org/10.1007/bf01735329 (In English)
Matzke, A. J. M., Varga, F., Gruendler, P. et al. (1992) Characterization of a new repetitive sequence that is enriched on microchromosomes of turkey. Chromosoma, vol. 102, no. 1, pp. 9–14. https://doi.org/10.1007/BF00352284 (In English)
McFarlane, R. J., Humphrey, T. C. (2010) A role for recombination in centromere function. Trends in Genetics, vol. 26, no. 5, pp. 209–213. https://doi.org/10.1016/j.tig.2010.02.005 (In English)
Melters, D. P., Bradnam, K. R., Young, H. A. et al. (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biology, vol. 14, no. 1, article R10. https://doi.org/10.1186/gb-2013-14-1-r10 (In English)
Meyne, J., Ratliff, R. L. Moyzis, R. K. (1989) Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proceedings of the National Academy of Sciences of the USA, vol. 86, no. 18, pp. 7049–7053. https://doi.org/10.1073/pnas.86.18.7049 (In English)
Morris, K. M., Hindle, M. M., Boitard, S. et al. (2020) The quail genome: Insights into social behaviour, seasonal biology and infectious disease response. BMC Biology, vol. 18, no. 1, article 14. https://doi.org/10.1186/s12915-020-0743-4 (In English)
Mou, C., Pitel, F., Gourichon, D. (2011) Cryptic patterning of avian skin confers a developmental facility for loss of neck feathering. PLOS Biology, vol. 9, no. 3, article e1001028. https://doi.org/10.1371/journal.pbio.1001028 (In English)
Müller, S., Almouzni, G. (2017) Chromatin dynamics during the cell cycle. Nature Reviews Genetics, vol. 18, no. 3, pp. 192–208. https://doi.org/10.1038/nrg.2016.157 (In English)
Nakamura, D., Tiersch, T. R., Douglass, M. et al. (1990) Rapid identification of sex in birds by flow cytometry. Cytogenetics and Cell Genetics, vol. 53, no. 4, pp. 201–205. https://doi.org/10.1159/000132930 (In English)
Nanda, I., Schmid, M. (1994) Localization of the telomeric (TTAGGG)n sequence in chicken (Gallus Domesticus) chromosomes. Cytogenetics and Cell Genetics, vol. 65, no. 3, pp. 190–193. https://doi.org/10.1159/000133630 (In English)
Ng, R., Ness, J., Carbon, J. (1986) Structural studies on centromeres in the yeast Saccharomyces cerevisiae. Basic Life Sciences, vol. 40, pp. 479–492. https://doi.org/10.1007/978-1-4684-5251-8_36 (In English)
O’Meally, D., Patel, H. R., Stiglec, R. et al. (2010) Non-homologous sex chromosomes of birds and snakes share repetitive sequences. Chromosome Research, vol. 18, no. 7, pp. 787–800. https://doi.org/10.1007/s10577-010-9152-9 (In English)
Peng, J. C., Karpen, G. H. (2008) Epigenetic regulation of heterochromatic DNA stability. Current Opinion in Genetics and Development, vol. 18, no. 2, pp. 204–211. https://doi.org/10.1016/j.gde.2008.01.021 (In English)
Piégu, B., Arensburger, P., Beauclair, L. et al. (2020) Variations in genome size between wild and domesticated lineages of fowls belonging to the Gallus gallus species. Genomics, vol. 112, no. 2, pp. 1660–1673. https://doi.org/10.1016/j.ygeno.2019.10.004 (In English)
Podgornaya, O. I., Ostromyshenskii, D. I., Enukashvily, N. I. (2018) Who needs this junk, or genomic dark matter. Biochemistry (Moscow), vol. 83, no. 4, pp. 450–466. https://doi.org/10.1134/S0006297918040156 (In English)
Probst, A. V., Okamoto, I., Casanova, M. et al. (2010) A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Developmental Cell, vol. 19, no. 4, pp. 625–638. https://doi.org/10.1016/j.devcel.2010.09.002 (In English)
Riethman, H., Ambrosisni, A., Paul, S. (2005) Human subtelomere structure and variation. Chromosome Research, vol. 13, no. 5, pp. 505–515. https://doi.org/10.1007/s10577-005-0998-1 (In English)
Rodionov, A. V. (1996) Micro versus macro: A review of structure and functions of avian micro- and macrochromosomes. Russian Journal of Genetics, vol. 32, no. 5, pp. 517–527. (In English)
Sadeghi, L., Siggens, L., Svensson, J. P. et al. (2014) Centromeric histone H2B monoubiquitination promotes noncoding transcription and chromatin integrity. Nature Structural and Molecular Biology, vol. 21, no. 3, pp. 236–243. https://doi.org/10.1038/nsmb.2776 (In English)
Saifitdinova, A., Derjusheva, S., Krasikova, A. et al. (2003) Lampbrush chromosomes of the chaffinch (Fringilla coelebs L.). Chromosome Research, vol. 11, no. 2, pp. 99–113. https://doi.org/10.1023/A:1022859713777 (In English)
Saifitdinova, A. F., Derjusheva, S. E., Malykh, A. G. et al. (2001) Centromeric tandem repeat from the chaffinch genome: Isolation and molecular characterization. Genome, vol. 44, no. 1, pp. 96–103. https://doi.org/10.1139/gen-44-1-96 (In English)
Saifitdinova, A. F., Galkina, S. A., Koshel, E. I., Gaginskaya, E. R. (2016) Rol’ povtoryayushchikhsya posledovatel’nostej v evolyutsii polovykh khromosom u ptits [The role of repetitive sequences in the evolution of sex chromosomes in birds]. Tsitologiya, vol. 58, no. 5, pp. 393–398. (In Russian)
Saifitdinova, A., Galkina, S., Kulak, M. et al. (2019) Nucleolus organizers transposition in the genome of Japanese quail. Molecular Cytogenetics, vol. 12, no. 30, pp. 63. (In English)
Saifitdinova, A. F., Timofejeva, L. P., Zhurov, V. G., Gaginskaya, E. R. (2000) A highly repeated FCP centromeric sequence from chaffinch (Fringilla coelebs) genome is revealed within interchromosomal connectives during. Tsitologiia, vol. 42, no. 6, pp. 588–593. https://pubmed.ncbi.nlm.nih.gov/10953865/ (In English)
Saitoh, Y., Mizuno, S. (1992) Distribution of XhoI and EcoRI family repetitive DNA-sequences into separate domains in the chicken W-chromosome. Chromosoma, vol. 101, no. 8, pp. 474–477. https://doi.org/10.1007/bf00352469 (In English)
Saitoh, Y., Saitoh, H., Ohtomo, K. et al. (1991) Occupancy of the majority of DNA in the chicken W chromosome by bent-repetitive sequences. Chromosoma, vol. 101, no. 1, pp. 32–40. https://doi.org/10.1007/BF00360684 (In English)
Schalch, T., Steiner, F. A. (2017) Structure of centromere chromatin: from nucleosome to chromosomal architecture. Chromosoma, vol. 126, no. 4, pp. 443–455. https://doi.org/10.1007/s00412-016-0620-7 (In English)
Schmid, M., Loser, C., Schmidtke, J. et al. (1982) Evolutionary conservation of a common pattern of activity of nucleolus organizers during spermatogenesis in vertebrates. Chromosoma, vol. 86, no. 2, pp. 149–179. https://doi.org/10.1007/bf00288674 (In English)
Seol, D., Ko, B. J., Kim, B. et al. (2019) Identification of copy number variation in domestic chicken using whole-genome sequencing reveals evidence of selection in the genome. Animals, vol. 9, no. 10, article 809. https://doi.org/10.3390/ani9100809 (In English)
Shang, W.-H., Hori, T., Toyoda, A. et al. (2010) Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Research, vol. 20, no. 9, pp. 1219–1228. https://doi.org/10.1101/gr.106245.110 (In English)
Shang, W.-H., Hori, T., Westhorpe, F. G. et al. (2016) Acetylation of histone H4 lysine 5 and 12 is required for CENP-A deposition into centromeres. Nature Communications, vol. 7, article 13465. https://doi.org/10.1038/ncomms13465 (In English)
Shinomiya, A., Kayashima, Y., Kinoshita, K. et al. (2012) Gene duplication of endothelin 3 is closely correlated with the hyperpigmentation of the internal organs (fibromelanosis) in silky chickens. Genetics, vol. 190, no. 2, pp. 627–638. https://doi.org/10.1534/genetics.111.136705 (In English)
Skinner, B. M., al Mutery, A., Smith, D. et al. (2014) Global patterns of apparent copy number variation in birds revealed by cross-species comparative genomic hybridization. Chromosome Research, vol. 22, no. 1, pp. 59–70. https://doi.org/10.1007/s10577-014-9405-0 (In English)
Solovei, I., Gaginskaya, E., Macgregor, H. C. (1994) The arrangement and transcription of telomere DNA sequences at the ends of lampbrush chromosomes of birds. Chromosome Research, vol. 2, no. 6, pp. 460–470. https://doi.org/10.1007/bf01552869 (In English)
Solovei, I., Joffe, B. I., Gaginskaya, E. R. et al. (1996) Transcription of lampbrush chromosomes of a centromerically localized highly repeated DNA in pigeon (Columba) relates to sequence arrangement. Chromosome Research, vol. 4, no. 8, pp. 588–603. https://doi.org/10.1007/bf02261722 (In English)
Sullivan, B. A., Karpen, G. H. (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nature Structural and Molecular Biology, vol. 11, no. 11, pp. 1076–1083. https://doi.org/10.1038/nsmb845 (In English)
Takki, O., Komissarov, A., Kulak, M. et al. (2022) Identification of centromere-specific repeats in the zebra finch genome. Cytogenetic and Genome Reseatch, vol. 162, pp. 55–63. https://www.doi.org/10.1159/000521716 (In English)
Talbert, P. B., Henikoff, S. (2010) Centromeres convert but don’t cross. PLOS Biology, vol. 8, no. 3, article e1000326. https://doi.org/10.1371/journal.pbio.1000326 (In English)
Tanaka, K., Suzuki, T., Nojiri, T. et al. (2000) Characterization and chromosomal distribution of a novel satellite DNA sequence of Japanese quail (Coturnix coturnix japonica). Journal of Heredity, vol. 91, no. 5, pp. 412–415. https://doi.org/10.1093/jhered/91.5.412 (In English)
Teranishi, M., Shimada, Y., Hori, T. et al. (2001) Transcripts of the MHM region of the chicken Z chromosome accumulate as non-coding RNA in the nucleus of female cells adjacent to the DMRT locus. Chromosome Research, vol. 9, no. 2, pp. 147–165. https://doi.org/10.1023/A:1009235120741 (In English)
Torgasheva, A. A., Malinovskaya, L. P., Zadesenets, K. S. et al. (2019) Germline-restricted chromosome (GRC) is widespread among songbirds. Proceedings of the National Academy of Sciences of the USA, vol. 116, no. 24, pp. 11845–11850. https://doi.org/10.1073/pnas.1817373116 (In English)
Treplin, S., Tiedemann, R. (2007) Specific chicken repeat 1 (CR1) retrotransposon insertion suggests phylogenetic affinity of rockfowls (genus Picathartes) to crows and ravens (Corvidae). Molecular Phylogenetics and Evolution, vol. 43, no. 1, pp. 328–337. https://doi.org/10.1016/j.ympev.2006.10.020 (In English)
Uno, Y., Nishida, C., Hata, A. et al. (2019) Molecular cytogenetic characterization of repetitive sequences comprising centromeric heterochromatin in three Anseriformes species. PLOS One, vol. 14, no. 3, article e0214028. https://doi.org/10.1371/journal.pone.0214028 (In English)
Vaquero-Sedas, M. I., Vega-Palas, M. A. (2011) On the chromatin structure of eukaryotic telomeres. Epigenetics, vol. 6, no. 9, pp. 1055–1058. https://doi.org/10.4161/epi.6.9.16845 (In English)
Wallen, M. J., Keinаinen, R. A., Kulomaa, M. S. (1996) Two chicken repeat one (CR1) elements lacking a silencer-like region upstream of the chicken avidin-related genes Avr4 and Avr5. Biochimica et Biophysica Acta (BBA)— Gene Structure and Expression, vol. 1308, no. 3, pp. 193–196. https://doi.org/10.1016/0167-4781(96)00119-4 (In English)
Wallis, J. W., Aerts, J., Groenen, A. M. et al. (2004) A physical map of the chicken genome. Nature, vol. 432, no. 7018, pp. 793–800. https://doi.org/10.1038/nature03030 (In English)
Wang, S., Zakian, V. (1990) Telomere telomere recombination provides an express pathway for telomere acquisition. Nature, vol. 345, no. 6274, pp. 456–458. https://doi.org/10.1038/345456a0 (In English)
Wang, X., Byers, S. (2014) Copy number variation in chickens: A review and future prospects. Microarrays, vol. 3, no. 1, pp. 24–38. https://doi.org/10.3390/microarrays3010024 (In English)
Wang, X., Li, J., Leung, F. C. (2002) Partially inverted tandem repeat isolated from pericentric region of chicken chromosome 8. Chromosome Research, vol. 10, no. 1, pp. 73–82. https://doi.org/10.1023/a:1014226412339 (In English)
Warburton, P. E., Haaf, T., Gosden, J. et al. (1996) Characterization of a chromosome-specific chimpanzee alpha satellite subset: evolutionary relationship to subsets on human chromosomes. Genomics, vol. 33, no. 2, pp. 220–228. https://doi.org/10.1006/geno.1996.0187 (In English)
Warren, W. C., Hillier, L. W., Tomlinson, C. et al. (2017) A new chicken genome assembly provides insight into avian genome structure. G3. Genes. Genomes. Genetics, vol. 7, no. 1, pp. 109–117. https://doi.org/10.1534/g3.116.035923 (In English)
Watanabe, M., Nikaido, M., Tsuda, T. T. et al. (2006) The rise and fall of the CR1 subfamily in the lineage leading to penguins. Gene, vol. 365, pp. 57–66. https://doi.org/10.1016/j.gene.2005.09.042 (In English)
Weiler, K., Wakimoto, B. (1995) Heterochromatin and gene expression in Drosophila. Annual Review of Genetics, vol. 29. no. 1, pp. 577–605. https://doi.org/10.1146/annurev.ge.29.120195.003045 (In English)
Weissensteiner, M. H., Suh, A. (2019) Repetitive DNA: The dark matter of avian genomics. In: R. Kraus (ed.). Avian genomics in ecology and evolution. Cham: Springer Publ., pp. 93–150. https://doi.org/10.1007/978-3-030-16477-5_5 (In English)
Wicker, T., Robertson, J. S., Schulze, S. R. et al. (2005) The repetitive landscape of the chicken genome. Genome Research, vol. 15, no. 1, pp. 126–136. https://doi.org/10.1101/gr.2438005 (In English)
Wicker, T., Sabot, F., Hua-Van, A. et al. (2007) A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, vol. 8, no. 12, pp. 973–982. https://doi.org/10.1038/nrg2165 (In English)
Wright, D., Boije, H., Meadows, J. R. S. et al. (2009) Copy number variation in intron 1 of SOX5 causes the pea-comb phenotype in chickens. PLOS Genetics, vol. 5, no. 6, article e1000512. https://doi.org/10.1371/journal.pgen.1000512 (In English)
Yamada, K., Nishida-Umehara, C., Ishijima, J. et al. (2006) A novel family of repetitive DNA sequences amplified site-specifically on the W chromosomes in Neognathous birds. Chromosome Research, vol. 14, no. 6, pp. 613–627. https://doi.org/10.1007/s10577-006-1071-4 (In English)
Yamada, K., Nishida-Umehara, C., Matsuda, Y. (2004) A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes). Chromosoma, vol. 112, no. 6, pp. 277–287. https://doi.org/10.1007/s00412-003-0267-z (In English)
Yamada, K., Shibusawa, M., Tsudzuki, M. et al. (2002) Molecular cloning and characterization of novel centromeric repetitive DNA sequences in the blue-breasted quail (Coturnix chinensis, Galliformes). Cytogenetic Genome Research, vol. 98, no. 4, pp. 255–261. https://doi.org/10.1159/000071044 (In English)
Yi, Q., Chen, Q., Liang, C. et al. (2018) HP1 links centromeric heterochromatin to centromere cohesion in mammals. EMBO Reports, vol. 19, no. 4, article e45484. https://doi.org/10.15252/embr.201745484 (In English)
Zhang, G., Jarvis, E. D., Gilbert, M. T. P. (2014a) A flock of genomes. Science, vol. 346, no. 6215, pp. 1308–1309. https://doi.org/10.1126/science.346.6215.1308 (In English)
Zhang, G., Li, C., Li, Q. et al. (2014b) Comparative genomics reveals insights into avian genome evolution and adaptation. Science, vol. 346, no. 6215, pp. 1311–1320. https://doi.org/10.1126/science.1251385
Zopl, D., Dineva, B., Betz, H. et al. (1990) Isolation of the chicken middle-molecular weight neurofilament (NF-M) gene and characterization of its promoter. Nucleic Acids Research, vol. 18, no. 3, pp. 521–529. https://doi.org/10.1093/nar/18.3.521 (In English)
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2022 Алсу Фаритовна Сайфитдинова
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Автор предоставляет материалы на условиях публичной оферты и лицензии CC BY-NC 4.0. Эта лицензия позволяет неограниченному кругу лиц копировать и распространять материал на любом носителе и в любом формате, но с обязательным указанием авторства и только в некоммерческих целях. После публикации все статьи находятся в открытом доступе.
Авторы сохраняют авторские права на статью и могут использовать материалы опубликованной статьи при подготовке других публикаций, а также пользоваться печатными или электронными копиями статьи в научных, образовательных и иных целях. Право на номер журнала как составное произведение принадлежит издателю.