Физиологические и клинические эффекты синтетического аналога АКТГ4–10 семакса и его механизмы действия

Авторы

DOI:

https://doi.org/10.33910/2687-1270-2022-3-2-204-220

Ключевые слова:

семакс, пролил-глицил-пролин, ноотропы, нейропротекторы, гастропротективные эффекты, нейротрофические факторы, синактон

Аннотация

Семакс (Met-Glu-His-Phe-Pro-Gly-Pro, MEHFPGP) — синтетический аналог адренокортикотропного гормона 4–10 (АКТГ4–10, Met-Glu-His-Phe-Arg-Trp-Gly, MEHFRWG), обладающий более высокой устойчивостью к действию протеаз, чем его природный аналог. В клинической практике этот пептид применяют в качестве ноотропного и нейропротекторного средства в основном для профилактики и коррекции последствий нарушения мозгового кровообращения. В экспериментах на животных обнаружены позитивные эффекты этого пептида на состояние не только мозга, но и желудка, кишечника, поджелудочной железы, сердца и печени в различных экспериментальных моделях патологии этих органов. Механизмы действия семакса все еще находятся на стадии изучения. Показано, что семакс существенно влияет на экспрессию генов, ассоциированных с процессами иммунного ответа, воспаления, репарации ДНК, нейротрансмиссии, функционирования сосудистой системы, регуляции содержания кальция и нейротрофических факторов в клетках и др. Направленность этих эффектов противодействует нарушению работы генов, которое вызвано такими патологическими факторами, как стресс и ишемия. При деградации семакса в организме могут образовываться фрагменты, обладающие собственной биологической активностью, что может расширить регуляторный потенциал исходной молекулы. Целью настоящего обзора является анализ экспериментальных данных об эффектах и возможных механизмах действия семакса, в том числе выходящих за рамки его традиционного применения в медицинской практике.

Библиографические ссылки

ЛИТЕРАТУРА

Алексеева, Г. В., Боттаев, Н. А., Горошкова, В. В. (1999) Применение семакса в отдаленном периоде у больных с постгипоксической патологией мозга. Анестезиология и реаниматология, № 1, с. 40–43.

Ашмарин, И. П., Королева, С. В., Мясоедов, Н. Ф. (2006) Синактоны — функционально связанные комплексы эндогенных регуляторов. Экспериментальная и клиническая фармакология, т. 69, № 5, с. 3–6.

Ашмарин, И. П., Незавибатько, В. Н., Мясоедов, Н. Ф. и др. (1997) Ноотропный аналог адренокортикотропина 4–10-семакс (15-летний опыт разработки и изучения). Журнал высшей нервной деятельности им. И. П. Павлова, т. 47, № 2, с. 420–430.

Бердалин, А. Б., Гаврилова, С. А., Голубева, А. В. и др. (2011) Влияние семакса на апоптотическую гибель кардиомиоцитов крыс при необратимой ишемии и ишемии-реперфузии. Российский медико-биологический вестник им. академика И П. Павлова, т. 19, № 2, с. 13–20. https://www.doi.org/10.17816/PAVLOVJ201122-2

Бобынцев, И. И., Крюков, А. А., Шепелева, О. М., Иванов А. В. (2015а) Влияние пептида АКТГ4-7-ПГП на перекисное окисление липидов в печени крыс и активность сывороточных трансаминаз в условиях иммобилизационного стресса. Экспериментальная и клиническая фармакология, т. 78, № 8, с. 18–21. https://doi.org/10.30906/0869-2092-2015-78-8-18-21

Бобынцев, И. И., Шепелева, О. М., Крюков, А. А. и др. (2015b) Влияние пептида АКТГ4-7-ПГП на функциональное состояние гепатоцитов крыс при остром и хроническом эмоционально-болевом стрессе. Российский физиологический журнал им. И. М. Сеченова, т. 101, № 2, с. 171–179.

Ворвуль, А. О., Бобынцев, И. И., Свищева, М. В. и др. (2021) Пептид АКТГ4–7-PGP корригирует поведение и уровень кортикостерона у крыс в условиях хронического стресса. Российский физиологический журнал им. И. М. Сеченова, т. 107, № 11, с. 1359–1371. https://www.doi.org/10.31857/S0869813921110108

Гаврилова, С. А., Голубева, А. В., Липина, Т. В. и др. (2006) Защитное действие пептида семакса АКТГ4–7-PGP на частоту сердечных сокращений крыс после инфаркта миокарда. Российский физиологический журнал им. И. М. Сеченова, т. 92, № 11, с. 1305–1321.

Гусев, Е. И., Мартынов, М. Ю., Костенко, Е. В. и др. (2018) Эффективность семакса при лечении больных на разных стадиях ишемического инсульта. Журнал неврологии и психиатрии им. С. С. Корсакова, т. 118, № 3, с. 61–68. https://www.doi.org/10.17116/jnevro20181183261-68

Гусев, Е. И., Скворцова, В. И., Чуканова, Е. И. (2005) Семакс в профилактике прогрессирования и развития обострений у больных с дисциркуляторной энцефалопатией. Журнал неврологии и психиатрии им. С. С. Корсакова, т. 105, № 2, с. 35–40.

Донцова, Е. В. (2015) Возможности медикаментозной коррекции нарушений липидного обмена, ассоциированных с метаболическим синдромом, у больных псориазом. Экспериментальная и клиническая фармакология, т. 78, № 12, с. 30–33.

Жуйкова, С. Е. (2020) Глипролины — регуляторные пептиды с интегративным действием. Интегративная физиология, т. 1, № 4, с. 303–316. https://doi.org/10.33910/2687-1270-2020-1-4-303-316

Жуйкова, С. Е., Бадмаева, К. Е., Самонина, Г. Е., Плесская, Л. Г. (2003a) Семакс и некоторые глипролиновые пептиды ускоряют заживление ацетатных язв у крыс. Экспериментальная и клиническая гастроэнтерология, № 4, c. 88–91.

Жуйкова, С. Е., Самонина, Г. Е. (2002) Гомеостаз слизистой оболочки желудка и кровоток. Сообщение 2. Роль ишемии в нарушении гомеостаза слизистой оболочки желудка. Успехи физиологических наук, т. 33, № 1, с. 77–87.

Жуйкова, С. Е., Хропычева, Р. П., Золотарев, В. А. и др. (2003b) Новые пептидные регуляторы желудочной секреции крыс (амилин, PGP и семакс). Экспериментальная и клиническая гастроэнтерология, № 2, c. 86–90.

Золотарев, Ю. А., Дадаян, А. К., Долотов, О. В. и др. (2006) Равномерно меченные тритием пептиды в исследованиях по их биодеградации in vivo и in vitro. Биоорганическая химия, т. 32, № 2, с. 183–191.

Иванов, Ю. В. (2000) Ультраструктурные изменения в поджелудочной железе крыс с острым панкреатитом после введения семакса. Экспериментальная и клиническая фармакология, т. 63, № 6, с. 37–38.

Иванова, Д. М., Левицкий, Д. А., Левицкая, Н. Г. и др. (2006) Изучение взаимосвязи между анальгетической активностью и структурой синтетических аналогов меланокортина. Известия Российской академии наук. Серия биологическая, № 2, с. 204–210.

Курышева, Н. И., Шпак, А. А., Иойлева, Е. Е. и др. (2001) Семакс в лечении глаукоматозной оптической нейропатии у больных с нормализованным офтальмотонусом. Вестник офтальмологии, т. 117, № 4, с. 5–8.

Мясоедова, Н. Ф., Скворцова, В. И., Насонов, Е. Л. и др. (1999) Исследование механизмов нейропротекторного действия семакса в остром периоде ишемического инсульта. Журнал неврологии и психиатрии им. С. С. Корсакова, т. 99, № 5, с. 15–19.

Полунин, Г. С., Нуриева, С. М., Баяндин, Д. Л. и др. (2000) Определение терапевтической эффективности отечественного препарата «Семакс 0,1%» при заболеваниях зрительного нерва. Вестник офтальмологии, т. 116, № 1, с. 15–18.

Сломинский, П. А., Шадрина, М. И. (2018) Пептидные лекарственные средства: возможности, перспективы и ограничения. Молекулярная генетика, микробиология и вирусология, т. 36, № 1, с. 8–14. https://www.doi.org/10.18821/0208-0613-2018-36-1-8-14

Хавинсон, В. Х. (2020) Лекарственные пептидные препараты: прошлое, настоящее, будущее. Клиническая медицина, т. 98, № 3, с. 165–177. https://www.doi.org/10.30629/0023-2149-2020-98-3-165-177

Яснецов, В. В., Воронина, Т. А. (2010) Антигипоксический и антиамнестический эффекты мексидола и семакса. Экспериментальная и клиническая фармакология, т. 73, № 4, с. 2–7.

Bohus, B. (1979) Effects of ACTH-like neuropeptides on animal behavior and man. Pharmacology, vol. 18, no. 3, pp. 113–122. https://www.doi.org/10.1159/000137239

Cherkasova, K. A., Lyapina L. A., Ashmarin I. P. (2001) Comparative study of modulatory effects of semax and primary proline-containing peptides on hemostatic reactions. Bulletin of Experimental Biology and Medicine, vol. 132, no. 1, pp. 625–626. https://www.doi.org/10.1023/a:1012503606536

De Wied, D. (1977) Behavioral effects of neuropeptides related to ACTH, MSH, and betaLPH. Annals of the New York Academy of Sciences, vol. 297, no. 1, pp. 263–274. https://www.doi.org/10.1111/j.1749-6632.1977.tb41859.x

Dmitrieva, V. G., Dergunova, L. V., Povarova, O. V. et al. (2008) The effect of semax and the C-terminal peptide PGP on expression of growth factor genes and receptors in rats under conditions of experimental cerebral ischemia. Doklady Biochemistry and Biophysics, vol. 422, no. 1 pp. 261–264. https://www.doi.org/10.1134/s1607672908050037

Dmitrieva, V. G., Povarova, O. V., Skvortsova, V. I. et al. (2010) Semax and Pro-Gly-Pro activate the transcription of neurotrophins and their receptor genes after cerebral ischemia. Cellular and Molecular Neurobiology, vol. 30, no. 1, pp. 71–79. https://www.doi.org/10.1007/s10571-009-9432-0

Dolotov, O. V., Karpenko, E. A., Inozemtseva, L. S. et al. (2006а) Semax, an analog of ACTH(4–10) with cognitive effects, regulates BDNF and trkB expression in the rat hippocampus. Brain Research, vol. 1117, no. 1, pp. 54–60. https://www.doi.org/10.1016/j.brainres.2006.07.108

Dolotov, O. V., Karpenko, E. A., Seredenina, T. S. et al. (2006b) Semax, an analogue of adrenocorticotropin (4–10), binds specifically and increases levels of brain-derived neurotrophic factor protein in rat basal forebrain. Journal of Neurochemistry, vol. 97, no. s1, pp. 82–86. https://www.doi.org/10.1111/j.1471-4159.2006.03658.x

Elagina, A. A., Lyashev, Yu. D., Lyashev, A. Yu. et al. (2020) Correction of lipid metabolism disorders in diabetes mellitus with peptide drugs. Bulletin of Experimental Biology and Medicine, vol. 168, no. 5, pp. 618–620. https://www.doi.org/10.1007/s10517-020-04764-2

Eremin, K. O., Kudrin, V. S., Saransaari, P. et al. (2005) Semax, an ACTH(4–10) analogue with nootropic properties, activates dopaminergic and serotoninergic brain systems in rodents. Neurochemical Research, vol. 30, no. 12, pp. 1493–1500. https://www.doi.org/10.1007/s11064-005-8826-8

Filippenkov, I. B., Stavchansky, V. V., Denisova, A. E. et al. (2020) Novel insights into the protective properties of ACTH(4-7)PGP (Semax) peptide at the transcriptome level following cerebral ischaemia-reperfusion in rats. Genes, vol. 11, no. 6, article 681. https://www.doi.org/10.3390/genes11060681

Filippenkov, I. B., Stavchansky, V. V., Glazova, N. Yu. et al. (2021) Antistress action of melanocortin derivatives associated with correction of gene expression patterns in the hippocampus of male rats following acute stress. International Journal of Molecular Sciences, vol. 22, no. 18, article 10054. https://www.doi.org/10.3390/ijms221810054

Gavrilova, S. A., Markov, M. A., Berdalin, A. B. et al. (2017) Changes in sympathetic innervation of the heart in rats with experimental myocardial infarction. effect of Semax. Bulletin of Experimental Biology and Medicine, vol. 163, no. 5, pp. 617–619. https://www.doi.org/10.1007/s10517-017-3862-3

Giuliani, D., Minutoli, L., Ottani, A. et al. (2012) Melanocortins as potential therapeutic agents in severe hypoxic conditions. Frontiers in Neuroendocrinology, vol. 33, no. 2, pp. 179–193. https://www.doi.org/10.1016/j.yfrne.2012.04.001

Giuliani, D., Ottani, A., Neri, L. et al. (2017) Multiple beneficial effects of melanocortin MC4 receptor agonists in experimental neurodegenerative disorders: Therapeutic perspectives. Progress in Neurobiology, vol. 148, pp. 40–56. https://www.doi.org/10.1016/j.pneurobio.2016.11.004

Glazova, N. Yu., Manchenko, D. M., Volodina, M. A. et al. (2021) Semax, synthetic ACTH(4–10) analogue, attenuates behavioural and neurochemical alterations following early-life fluvoxamine exposure in white rats. Neuropeptides, vol. 86, article 102114. https://www.doi.org/10.1016/j.npep.2020.102114

Grigorjeva, M. E., Lyapina, L. A. (2010) Anticoagulation and antiplatelet effects of semax under conditions of acute and chronic immobilization stress. Bulletin of Experimental Biology and Medicine, vol. 149, no. 1, pp. 44–46. https://www.doi.org/10.1007/s10517-010-0871-x

Grivennikov, I. A., Dolotov, O. V., Zolotarev, Ya. A. et al. (2008) Effects of behaviorally active ACTH(4–10) analogue—Semax on rat basal forebrain cholinergic neurons. Restorative Neurology and Neuroscience, vol. 26, no. 1, pp. 35–43.

Indharty, R. S. (2013) The increase of serum Bcl-2 concentration in moderate head injury outcome: The role of ACTH4–10Pro8-Gly9-Pro10. Asian Journal of Neurosurgery, vol. 8, no. 2, pp. 83–89. https://www.doi.org/10.4103/1793-5482.116381

Ivanikov, I. O., Brekhova, M. E., Samonina, G. E. et al. (2002) Therapy of peptic ulcer with Semax peptide. Bulletin of Experimental Biology and Medicine, vol. 134, no. 1, pp. 73–74. https://www.doi.org/10.1023/a:1020621124776

Ivanov, A. V., Bobyntsev, I. I., Shepeleva, O. M. et al. (2017) Influence of ACTG4-7-PGP (Semax) on morphofunctional state of hepatocytes in chronic emotional and painful stress. Bulletin of Experimental Biology and Medicine, vol. 163, no. 1, pp. 105–108. https://www.doi.org/10.1007/s10517-017-3748-4

Kaplan, A., Kochetova, A., Nezavibathko V. N., Ashmarin I. P. (1996) Synthetic ACTH analogue Semax displays nootropic-like activity in humans. Neuroscience Research Communications, vol. 19, no. 2, pp. 115–123. https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1520-6769(199609)19:2%3C115::AID-NRC171%3E3.0.CO;2-B

Khushboo, Siddiqi, N. J., de Lourdes Pereira, M., Sharma, B. (2022) Neuroanatomical, biochemical, and functional modifications in brain induced by treatment with antidepressants. Molecular Neurobiology, vol. 56, no. 6, pp. 3564–3584. https://www.doi.org/10.1007/s12035-022-02780-z

Kim, S.-D., Lee, H.-Y., Shim, J.-W. et al. (2011) Activation of CXCR2 by extracellular matrix degradation product acetylated Pro-Gly-Pro has therapeutic effects against sepsis. American Journal of Respiratory and Critical Care Medicine, vol. 184, no. 2, pp. 243–251. https://www.doi.org/10.1164/rccm.201101-0004OC

Kolacheva, A. A., Ugrumov, M. V. (2021) A Mouse model of nigrostriatal dopaminergic axonal degeneration as a tool for testing neuroprotectors. Acta Naturae, vol. 13, no. 3 (50), pp. 110–113. https://www.doi.org/10.32607/actanaturae.11433

Koroleva, S. V., Ashmarin, I. P. (2002) Functional continuum of regulatory peptides (RPs): Vector model of RP-effects representation. Journal of Theoretical Biology, vol. 216, no. 3, pp. 257–271. https://www.doi.org/10.1006/jtbi.2002.2555

Levitskaya, D. A., Vilenskii, E. A., Sebentsova, L. A. et al. (2010) Influence of semax on the emotional state of white rats in the norm and against the background of cholecystokinin-tetrapeptide action. Biology Bulletin, vol. 37, no. 2, pp. 186–192. https://www.doi.org/10.1134/S1062359010020147

Levitskaya, N. G., Vilensky, D. A., Glazova, N. Yu. et al. (2011) Study of Semax influence on depression-like behavior of white rats in different experimental models. Problems of Biological, Medical and Pharmaceutical Chemistry, no. 4, pp. 46–51.

Medvedeva, E. V., Dmitrieva, V. G., Limborska, S. A. et al. (2017) Semax, an analog of ACTH(4-7), regulates expression of immune response genes during ischemic brain injury in rats. Molecular Genetics and Genomics, vol. 292, no. 3, pp. 635–653. https://www.doi.org/10.1007/s00438-017-1297-1

Medvedeva, E. V., Dmitrieva, V. G., Povarova, O. V. et al. (2014) The peptide semax affects the expression of genes related to the immune and vascular systems in rat brain focal ischemia: Genome-wide transcriptional analysis. BMC Genomics, vol. 15, no. 1, article 228. https://www.doi.org/10.1186/1471-2164-15-228

Mocchetti, I., Wrathall, J. R. (1995) Neurotrophic factors in central nervous system trauma. Journal of Neurotrauma, vol. 12, no. 5, pp. 853–870. https://www.doi.org/10.1089/neu.1995.12.853

Mykicki, N., Herrmann, A. M., Schwab, N. et al. (2016) Melanocortin-1 receptor activation is neuroprotective in mouse models of neuroinflammatory disease. Science Translational Medicine, vol. 8, no. 362, article 362ra146. https://www.doi.org/10.1126/scitranslmed.aaf8732

Novosadova, E. V., Arsenyeva, E. L., Antonov, S. A. et al. (2019) The use of human induced pluripotent stem cells for testing neuroprotective activity of pharmacological compounds. Biochemistry (Moscow), vol. 84, no. 11, pp. 1296–1305. https://www.doi.org/10.1134/S0006297919110075

Samotrueva, M. A., Yasenyavskaya, A. L., Murtalieva, V. K. et al. (2019) Experimental substantiation of application of Semax as a modulator of immune reaction on the model of “social” stress. Bulletin of Experimental Biology and Medicine, vol. 166, no. 6, pp. 754–758. https://www.doi.org/10.1007/s10517-019-04434-y

Sciacca, M. F. M., Naletova, I., Giuffrida, M. L., Attanasio, F. (2022) Semax, a synthetic regulatory peptide, affects copper-induced abeta aggregation and amyloid formation in artificial membrane models. ACS Chemical Neuroscience, vol. 13, no. 4, pp. 486–496. https://www.doi.org/10.1021/acschemneuro.1c00707

Shadrina, M. I., Dolotov, O. V., Grivennikov, I. A. et al. (2001) Rapid induction of neurotrophin mRNAs in rat glial cell cultures by Semax, an adrenocorticotropic hormone analog. Neuroscience Letters, vol. 308, no. 2, pp. 115–118. https://www.doi.org/10.1016/s0304-3940(01)01994-2

Shadrina, M., Kolomin, T., Agapova, T. et al. (2010) Comparison of the temporary dynamics of NGF and BDNF gene expression in rat hippocampus, frontal cortex, and retina under Semax action. Journal of Molecular Neuroscience, vol. 41, no. 1, pp. 30–35. https://www.doi.org/10.1007/s12031-009-9270-z

Shakova, F. M., Kirova, Yu. I., Silachev, D. N. et al. (2021) Protective effects of pgc-1α activators on ischemic stroke in a rat model of photochemically induced thrombosis. Brain Sciences, vol. 11, no. 3, article 325. https://www.doi.org/10.3390/brainsci11030325

Sharonova, I. N., Bukanova, Yu. V., Myasoedov, N. F., Skrebitskii, V. G. (2018) Modulation of gaba- and glycine-activated ionic currents with Semax in isolated cerebral neurons. Bulletin of Experimental Biology and Medicine, vol. 164, no. 5, pp. 612–616. https://www.doi.org/10.1007/s10517-018-4043-8

Stavchanskii, V. V., Tvorogova, T. V., Botsina A. Yu. et al. (2011) The effect of semax and its c-terminal peptide PGP on expression of the neurotrophins and their receptors in the rat brain during incomplete global ischemia. Molecular Biology, vol. 45, no. 6, pp. 941–949. https://www.doi.org/10.1134/S0026893311050128

Storozhevykh, T. P., Tukhbatova, G. R., Senilova, Yu. E. et al. (2007) Effects of semax and its Pro-Gly-Pro fragment on calcium homeostasis of neurons and their survival under conditions of glutamate toxicity. Bulletin of Experimental Biology and Medicine, vol. 143, no. 5, pp. 601–604. https://www.doi.org/10.1007/s10517-007-0192-x

Sudarkina, O. Yu., Filippenkov, I. B., Stavchansky, V. V. et al. (2021) Brain protein expression profile confirms the protective effect of the ACTH(4-7)PGP peptide (semax) in a rat model of cerebral ischemia-reperfusion. International Journal of Molecular Sciences, vol. 22, no. 12, article 6179. https://www.doi.org/10.3390/ijms22126179

Svishcheva, M. V., Mishina, Ye. S., Medvedeva, O. A. et al. (2021) Morphofunctional state of the large intestine in rats under conditions of restraint stress and administration of peptide ACTH(4-7)-PGP (semax). Bulletin of Experimental Biology and Medicine, vol. 170, no. 3, pp. 384–388. https://www.doi.org/10.1007/s10517-021-05072-z

Svishcheva, M. V., Mukhina, A. Yu., Medvedeva, O. A. et al. (2020) Composition of colon microbiota in rats treated with ACTH(4-7)-PGP Peptide (semax) under conditions of restraint stress. Bulletin of Experimental Biology and Medicine, vol. 169, no. 3, pp. 357–360. https://www.doi.org/10.1007/s10517-020-04886-7

Uchakina, O. N., Uchakin, P. N., Mezentseva, M. V. et al. (2006) Immunocorrection of altered cytokine production in neurological patients. FASEB Journal, vol. 20, no. 5, article A1128. https://doi.org/10.1096/fasebj.20.5.A1128-c

Volodina, M. A., Sebentsova, E. A., Glazova, N. Yu. et al. (2012) Semax attenuates the influence of neonatal maternal deprivation on the behavior of adolescent white rats. Bulletin of Experimental Biology and Medicine, vol. 152, no. 5, pp. 560–563. https://www.doi.org/10.1007/s10517-012-1574-2

Vyunova, T. V., Andreeva, L. A., Shevchenko, K. V. et al. (2008) Binding of tripeptide Pro-Gly-Pro labeled at the C-terminal proline residue to plasma membranes of the rat forebrain. Doklady Biological Sciences, vol. 419, no. 1, pp. 95–96. https://www.doi.org/10.1134/S0012496608020075

Vyunova, T. V., Andreeva, L. A., Shevchenko, K. V. et al. (2014) Characteristic features of specific binding of pentapeptide HFPGP labeled at the C-terminal proline residue to rat forebrain plasma membranes. Doklady Biochemistry and Biophysics, vol. 456, no. 1, pp. 101–103. https://www.doi.org/10.1134/S1607672914030077

Vyunova, T. V., Andreeva, L. A., Shevchenko, K. V., Myasoedov, N. F. (2019) An integrated approach to study the molecular aspects of regulatory peptides biological mechanism. Journal of Labelled Compounds and Radiopharmaceuticals, vol. 62, no. 12, pp. 812–822. https://www.doi.org/10.1002/jlcr.3785

Yatsenko, K. A., Glazova, N. Yu., Inozemtseva, L. S. et al. (2013) Heptapeptide Semax attenuates the effects of chronic unpredictable stress in rats. Doklady Biological Sciences, vol. 453, no. 1, pp. 353–357. https://www.doi.org/10.1134/S0012496613060161

Zhuikova, S. E., Sergeev, V. I., Samonina, G. E., Myasoedov, N. F. (2002) Possible mechanism underlying the effect of Semax on the formation of indomethacin-induced ulcers in rats. Bulletin of Experimental Biology and Medicine, vol. 133, no. 6, pp. 577–579. https://www.doi.org/10.1023/a:1020285909696

Zhuikova, S. E., Smirnova, E. A., Bakaeva, Z. V. et al. (2000) Effect of Semax on homeostasis of gastric mucosa in albino rats. Bulletin of Experimental Biology and Medicine, vol. 130, no. 9, pp. 871–873.

Zolotarev, Yu. A., Zhuikova, S. E., Ashmarin, I. P. (2003) Metabolism of PGP peptide after administration via different routes. Bulletin of Experimental Biology and Medicine, vol. 135, no. 4, pp. 361–364. https://www.doi.org/10.1023/a:1024612831380

REFERENCES

Alekseeva, G. V., Bottaev, N. A., Goroshkova, V. V. (1999) Primenenie semaksa v otdalennom periode u bol’nykh s postgipoksicheskoj patologiej mozga [Use of semax at a follow-up of patients with posthypoxic encephalopathy]. Anesteziologiya i Reanimatologiya — Russian Journal of Anаеsthesiology and Reanimatology, no. 1, pp. 40–43. (In Russian)

Ashmarin, I. P., Koroleva, S. V., Miasoedov, N. F. (2006) Sinaktony — funktsional’no svyazannye kompleksy endogennykh regulyatorov [Synactones — functionally conjugated complexes of endogenous regulators]. Eksperimental’naya i klinicheskaya farmakologiya — Experimental and Clinical Pharmacology, vol. 69, no. 5, pp. 3–6. (In Russian)

Ashmarin, I. P., Nezavibat’ko, V. N., Myasoedov, N. F. et al. (1997) Nootropnyj analog adrenokortikotropina 4–10-semaks (15-letnij opyt razrabotki i izucheniya) [A nootropic adrenocorticotropin analog 4–10-semax (15-years experience in its design and study)]. Zhurnal vysshej nervnoj deyatel’nosti im. I. P. Pavlova — I. P. Pavlov Journal of Higher Nervous Activity, vol. 47, no. 2, pp. 420–430. (In Russian)

Berdalin, A. B., Gavrilova, S. A., Golubeva, A. V. et al. (2011) Vliyanie semaksa na apoptoticheskuyu gibel’ kardiomiotsitov krys pri neobratimoj ishemii i ishemii-reperfuzii [Semax influence on rat cardiomyocite apoptotic cell death in irreversible ischemia and ischemia-reperfusion]. Rossijskij mediko-biologicheskij vestnik im. akademika I. P. Pavlova — I. P. Pavlov Russian Medical Biological Herald, vol. 19. no. 2, pp. 13–20. https://www.doi.org/10.17816/PAVLOVJ201122-2 (In Russian)

Bobyntsev, I., Kryukov, A. A., Shepeleva, O. M., Ivanov A. V. (2015а) Vliyanie peptida AKTG4-7-PGP na perekisnoe okislenie lipidov v pecheni krys i aktivnost’ syvorotochnykh transaminaz v usloviyakh immobilizatsionnogo stressa [The effect of ACTH4-7-PGP peptide on lipid peroxidation in liver and activity of serum transaminases in rats under acute and chronic immobilization stress conditions]. Eksperimental’naya i klinicheskaya farmakologiya — Experimental and Clinical Pharmacology, vol. 78, no. 8, pp. 18–21. https://doi.org/10.30906/0869-2092-2015-78-8-18-21 (In Russian)

Bobyntsev, I. I., Shepeleva, O. M., Kryukov, A. A. et al. (2015b) Vliyanie peptida AKTG4-7-PGP na funktsional’noe sostoyanie gepatotsitov krys pri ostrom i khronicheskom emotsional’no-bolevom stresse [The effect of peptide ACTH4-7-PGP on functional hepatocyte state in rats in acute and chronic foot-shock stress]. Rossijskij fiziologicheskij zhurnal im. I. M. Sechenova — Russian Journal of Physiology, vol. 101, no. 2, pp. 171–179. (In Russian)

Bohus, B. (1979) Effects of ACTH-like neuropeptides on animal behavior and man. Pharmacology, vol. 18, no. 3, pp. 113–122. https://www.doi.org/10.1159/000137239 (In English)

Cherkasova, K. A., Lyapina L. A., Ashmarin I. P. (2001) Comparative study of modulatory effects of semax and primary proline-containing peptides on hemostatic reactions. Bulletin of Experimental Biology and Medicine, vol. 132, no. 1, pp. 625–626. https://www.doi.org/10.1023/a:1012503606536 (In English)

De Wied, D. (1977) Behavioral effects of neuropeptides related to ACTH, MSH, and betaLPH. Annals of the New York Academy of Sciences, vol. 297, no. 1, pp. 263–274. https://www.doi.org/10.1111/j.1749-6632.1977.tb41859.x (In English)

Dmitrieva, V. G., Dergunova, L. V., Povarova, O. V. et al. (2008) The effect of semax and the C-terminal peptide PGP on expression of growth factor genes and receptors in rats under conditions of experimental cerebral ischemia. Doklady Biochemistry and Biophysics, vol. 422, no. 1 pp. 261–264. https://www.doi.org/10.1134/s1607672908050037 (In English)

Dmitrieva, V. G., Povarova, O. V., Skvortsova, V. I. et al. (2010) Semax and Pro-Gly-Pro activate the transcription of neurotrophins and their receptor genes after cerebral ischemia. Cellular and Molecular Neurobiology, vol. 30, no. 1, pp. 71–79. https://www.doi.org/10.1007/s10571-009-9432-0 (In English)

Dolotov, O. V., Karpenko, E. A., Inozemtseva, L. S. et al. (2006а) Semax, an analog of ACTH(4–10) with cognitive effects, regulates BDNF and trkB expression in the rat hippocampus. Brain Research, vol. 1117, no. 1, pp. 54–60. https://www.doi.org/10.1016/j.brainres.2006.07.108 (In English)

Dolotov, O. V., Karpenko, E. A., Seredenina, T. S. et al. (2006b) Semax, an analogue of adrenocorticotropin (4–10), binds specifically and increases levels of brain-derived neurotrophic factor protein in rat basal forebrain. Journal of Neurochemistry, vol. 97, no. s1, pp. 82–86. https://www.doi.org/10.1111/j.1471-4159.2006.03658.x (In English)

Dontsova, E. V. (2015) Vozmozhnosti medikamentoznoj korrektsii narushenij lipidnogo obmena, assotsiirovannykh s metabolicheskim sindromom, u bol’nykh psoriazom [Possible drug correction of lipid metabolism disturbances associated with metabolic syndrome in patients with psoriasis]. Eksperimental’naya i klinicheskaya farmakologiya — Experimental and Clinical Pharmacology, vol. 78, no. 12, pp. 30–33. (In Russian)

Elagina, A. A., Lyashev, Yu. D., Lyashev, A. Yu. et al. (2020) Correction of lipid metabolism disorders in diabetes mellitus with peptide drugs. Bulletin of Experimental Biology and Medicine, vol. 168, no. 5, pp. 618–620. https://www.doi.org/10.1007/s10517-020-04764-2 (In English)

Eremin, K. O., Kudrin, V. S., Saransaari, P. et al. (2005) Semax, an ACTH(4–10) analogue with nootropic properties, activates dopaminergic and serotoninergic brain systems in rodents. Neurochemical Research, vol. 30, no. 12, pp. 1493–1500. https://www.doi.org/10.1007/s11064-005-8826-8 (In English)

Filippenkov, I. B., Stavchansky, V. V., Denisova, A. E. et al. (2020) Novel insights into the protective properties of ACTH(4-7)PGP (Semax) peptide at the transcriptome level following cerebral ischaemia-reperfusion in rats. Genes, vol. 11, no. 6, article 681. https://www.doi.org/10.3390/genes11060681 (In English)

Filippenkov, I. B., Stavchansky, V. V., Glazova, N. Yu. et al. (2021) Antistress action of melanocortin derivatives associated with correction of gene expression patterns in the hippocampus of male rats following acute stress. International Journal of Molecular Sciences, vol. 22, no. 18, article 10054. https://www.doi.org/10.3390/ijms221810054 (In English)

Gavrilova, S. A., Golubeva, A. V., Lipina, T. V. et al. (2006) Zashchitnoe dejstvie peptida semaksa AKTG4-7-PGP na chastotu serdechnykh sokrashchenij krys posle infarkta miokarda [Protective effect of peptide semax ACTH4-7-PGP on the rat heart rate after myocardial infarction]. Rossijskij fiziologicheskij zhurnal im. I. M. Sechenova — Russian Journal of Physiology, vol. 92, no. 11, pp. 1305–1321. (In Russian)

Gavrilova, S. A., Markov, M. A., Berdalin, A. B. et al. (2017) Changes in sympathetic innervation of the heart in rats with experimental myocardial infarction. effect of Semax. Bulletin of Experimental Biology and Medicine, vol. 163, no. 5, pp. 617–619. https://www.doi.org/10.1007/s10517-017-3862-3 (In English)

Giuliani, D., Minutoli, L., Ottani, A. et al. (2012) Melanocortins as potential therapeutic agents in severe hypoxic conditions. Frontiers in Neuroendocrinology, vol. 33, no. 2, pp. 179–193. https://www.doi.org/10.1016/j.yfrne.2012.04.001 (In English)

Giuliani, D., Ottani, A., Neri, L. et al. (2017) Multiple beneficial effects of melanocortin MC4 receptor agonists in experimental neurodegenerative disorders: Therapeutic perspectives. Progress in Neurobiology, vol. 148, pp. 40–56. https://www.doi.org/10.1016/j.pneurobio.2016.11.004 (In English)

Glazova, N. Yu., Manchenko, D. M., Volodina, M. A. et al. (2021) Semax, synthetic ACTH(4–10) analogue, attenuates behavioural and neurochemical alterations following early-life fluvoxamine exposure in white rats. Neuropeptides, vol. 86, article 102114. https://www.doi.org/10.1016/j.npep.2020.102114 (In English)

Grigorjeva, M. E., Lyapina, L. A. (2010) Anticoagulation and antiplatelet effects of semax under conditions of acute and chronic immobilization stress. Bulletin of Experimental Biology and Medicine, vol. 149, no. 1, pp. 44–46. https://www.doi.org/10.1007/s10517-010-0871-x (In English)

Grivennikov, I. A., Dolotov, O. V., Zolotarev, Ya. A. et al. (2008) Effects of behaviorally active ACTH(4–10) analogue—Semax on rat basal forebrain cholinergic neurons. Restorative Neurology and Neuroscience, vol. 26, no. 1, pp. 35–43. (In English)

Gusev, E. I., Martynov, M. Yu., Kostenko, E. V. et al. (2018) Effektivnost’ semaksa pri lechenii bol’nykh na raznykh stadiyakh ishemicheskogo insul’ta [The efficacy of semax in the tretament of patients at different stages of ischemic stroke]. Zhurnal nevrologii i psikhiatrii im. S. S. Korsakova — S. S. Korsakov Journal of Neurology and Psychiatry, vol. 118, no. 3–2, pp. 61–68. https://www.doi.org/10.17116/jnevro20181183261-68 (In Russian)

Gusev, E. I., Skvortsova, V. I., Chukanova, E. I. (2005) Semaks v profilaktike progressirovaniya i razvitiya obostrenij u bol’nykh s distsirkulyatornoj entsefalopatiej [Semax in prevention of disease progress and development of exacerbations in patients with cerebrovascular insufficiency]. Zhurnal nevrologii i psikhiatrii im. S. S. Korsakova — S. S. Korsakov Journal of Neurology and Psychiatry, vol. 105, no. 2, pp. 35–40. (In Russian)

Indharty, R. S. (2013) The increase of serum Bcl-2 concentration in moderate head injury outcome: The role of ACTH4–10Pro8-Gly9-Pro10. Asian Journal of Neurosurgery, vol. 8, no. 2, pp. 83–89. https://www.doi.org/10.4103/1793-5482.116381 (In English)

Ivanikov, I. O., Brekhova, M. E., Samonina, G. E. et al. (2002) Therapy of peptic ulcer with Semax peptide. Bulletin of Experimental Biology and Medicine, vol. 134, no. 1, pp. 73–74. https://www.doi.org/10.1023/a:1020621124776 (In English)

Ivanov, A. V., Bobyntsev, I. I., Shepeleva, O. M. et al. (2017) Influence of ACTG4-7-PGP (Semax) on morphofunctional state of hepatocytes in chronic emotional and painful stress. Bulletin of Experimental Biology and Medicine, vol. 163, no. 1, pp. 105–108. https://www.doi.org/10.1007/s10517-017-3748-4 (In English)

Ivanov, Yu. V. (2000) Ul’trastrukturnye izmeneniya v podzheludochnoj zheleze krys s ostrym pankreatitom posle vvedeniya semaksa [Ultrastructural changes in the pancreas of rats with acute pancreatitis after semax administration]. Eksperimental’naya i klinicheskaya farmakologiya — Experimental and Clinical Pharmacology, vol. 63, no. 6, pp. 37–38. (In Russian)

Ivanova, D. M., Levitskij, D. A., Levitskaya, N. G. et al. (2006) Izuchenie vzaimosvyazi mezhdu anal’geticheskoj aktivnost’yu i strukturoj sinteticheskikh analogov melanokortina [Study of the relationship between analgesic activity and structure of synthetic melanocortin analogs]. Izvestiya Rossijskoj akademii nauk. Seriya biologicheskaya, no. 2, pp. 204–210. (In Russian)

Kaplan, A., Kochetova, A., Nezavibathko V. N., Ashmarin I. P. (1996) Synthetic ACTH analogue Semax displays nootropic-like activity in humans. Neuroscience Research Communications, vol. 19, no. 2, pp. 115–123. https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1520-6769(199609)19:2%3C115::AID-NRC171%3E3.0.CO;2-B (In English)

Khavinson, V. Kh. (2020) Lekarstvennye peptidnye preparaty: proshloe, nastoyashchee, budushchee [Peptide medicines: Past, present, future]. Klinicheskaya meditsina — Clinical Medicine, vol. 98, no. 3, pp. 165–177. https://www.doi.org/10.30629/0023-2149-2020-98-3-165-177 (In Russian)

Khushboo, Siddiqi, N. J., de Lourdes Pereira, M., Sharma, B. (2022) Neuroanatomical, biochemical, and functional modifications in brain induced by treatment with antidepressants. Molecular Neurobiology, vol. 56, no. 6, pp. 3564–3584. https://www.doi.org/10.1007/s12035-022-02780-z (In English)

Kim, S.-D., Lee, H.-Y., Shim, J.-W. et al. (2011) Activation of CXCR2 by extracellular matrix degradation product acetylated Pro-Gly-Pro has therapeutic effects against sepsis. American Journal of Respiratory and Critical Care Medicine, vol. 184, no. 2, pp. 243–251. https://www.doi.org/10.1164/rccm.201101-0004OC (In English)

Kolacheva, A. A., Ugrumov, M. V. (2021) A Mouse model of nigrostriatal dopaminergic axonal degeneration as a tool for testing neuroprotectors. Acta Naturae, vol. 13, no. 3 (50), pp. 110–113. https://www.doi.org/10.32607/actanaturae.11433 (In English)

Koroleva, S. V., Ashmarin, I. P. (2002) Functional continuum of regulatory peptides (RPs): Vector model of RP-effects representation. Journal of Theoretical Biology, vol. 216, no. 3, pp. 257–271. https://www.doi.org/10.1006/jtbi.2002.2555 (In English)

Kurysheva, N. I., Shpak, A. A., Iojleva, E. E. et al. (2001) Semaks v lechenii glaukomatoznoj opticheskoj nejropatii u bol’nykh s normalizovannym oftal’motonusom [Semax in the treatment of glaucomatous optic neuropathy in patients with normalized ophthalmic tone]. Vestnik oftal’mologii — The Russian Annals of Ophthalmology, vol. 117, no. 4, pp. 5–8. (In Russian)

Levitskaya, D. A., Vilenskii, E. A., Sebentsova, L. A. et al. (2010) Influence of semax on the emotional state of white rats in the norm and against the background of cholecystokinin-tetrapeptide action. Biology Bulletin, vol. 37, no. 2, pp. 186–192. https://www.doi.org/10.1134/S1062359010020147 (In English)

Levitskaya, N. G., Vilensky, D. A., Glazova, N. Yu. et al. (2011) Study of Semax influence on depression-like behavior of white rats in different experimental models. Problems of Biological, Medical and Pharmaceutical Chemistry, no. 4, pp. 46–51. (In English)

Medvedeva, E. V., Dmitrieva, V. G., Limborska, S. A. et al. (2017) Semax, an analog of ACTH(4-7), regulates expression of immune response genes during ischemic brain injury in rats. Molecular Genetics and Genomics, vol. 292, no. 3, pp. 635–653. https://www.doi.org/10.1007/s00438-017-1297-1 (In English)

Medvedeva, E. V., Dmitrieva, V. G., Povarova, O. V. et al. (2014) The peptide semax affects the expression of genes related to the immune and vascular systems in rat brain focal ischemia: Genome-wide transcriptional analysis. BMC Genomics, vol. 15, no. 1, article 228. https://www.doi.org/10.1186/1471-2164-15-228 (In English)

Mocchetti, I., Wrathall, J. R. (1995) Neurotrophic factors in central nervous system trauma. Journal of Neurotrauma, vol. 12, no. 5, pp. 853–870. https://www.doi.org/10.1089/neu.1995.12.853 (In English)

Myasoedova, N. F., Skvortsova, V. I., Nasonov, E. L. et al. (1999) Issledovanie mekhanizmov nejroprotektornogo dejstviya semaksa v ostrom periode ishemicheskogo insul’ta [Investigation of mechanisms of neuro-protective effect of semax in acute period of ischemic stroke]. Zhurnal nevrologii i psikhiatrii im. S. S. Korsakova — S. S. Korsakov Journal of Neurology and Psychiatry, vol. 99, no. 5, pp. 15–19. (In Russian)

Mykicki, N., Herrmann, A. M., Schwab, N. et al. (2016) Melanocortin-1 receptor activation is neuroprotective in mouse models of neuroinflammatory disease. Science Translational Medicine, vol. 8, no. 362, article 362ra146. https://www.doi.org/10.1126/scitranslmed.aaf8732 (In English)

Novosadova, E. V., Arsenyeva, E. L., Antonov, S. A. et al. (2019) The use of human induced pluripotent stem cells for testing neuroprotective activity of pharmacological compounds. Biochemistry (Moscow), vol. 84, no. 11, pp. 1296–1305. https://www.doi.org/10.1134/S0006297919110075 (In English)

Polunin, G. S., Nurieva, S. M., Baiandin, D.L. et al. (2000) Opredelenie terapevticheskoj effektivnosti otechestvennogo preparata “Semaks 0,1%” pri zabolevaniyakh zritel’nogo nerva [Evaluation of therapeutic effect of new Russian drug semax in optic nerve disease]. Vestnik oftal’mologii — The Russian Annals of Ophthalmology, vol. 116, no. 1, pp. 15–18. (In Russian)

Samotrueva, M. A., Yasenyavskaya, A. L., Murtalieva, V. K. et al. (2019) Experimental substantiation of application of Semax as a modulator of immune reaction on the model of “social” stress. Bulletin of Experimental Biology and Medicine, vol. 166, no. 6, pp. 754–758. https://www.doi.org/10.1007/s10517-019-04434-y (In English)

Sciacca, M. F. M., Naletova, I., Giuffrida, M. L., Attanasio, F. (2022) Semax, a synthetic regulatory peptide, affects copper-induced abeta aggregation and amyloid formation in artificial membrane models. ACS Chemical Neuroscience, vol. 13, no. 4, pp. 486–496. https://www.doi.org/10.1021/acschemneuro.1c00707 (In English)

Shadrina, M. I., Dolotov, O. V., Grivennikov, I. A. et al. (2001) Rapid induction of neurotrophin mRNAs in rat glial cell cultures by Semax, an adrenocorticotropic hormone analog. Neuroscience Letters, vol. 308, no. 2, pp. 115–118. https://www.doi.org/10.1016/s0304-3940(01)01994-2 (In English)

Shadrina, M., Kolomin, T., Agapova, T. et al. (2010) Comparison of the temporary dynamics of NGF and BDNF gene expression in rat hippocampus, frontal cortex, and retina under Semax action. Journal of Molecular Neuroscience, vol. 41, no. 1, pp. 30–35. https://www.doi.org/10.1007/s12031-009-9270-z (In English)

Shakova, F. M., Kirova, Yu. I., Silachev, D. N. et al. (2021) Protective effects of pgc-1α activators on ischemic stroke in a rat model of photochemically induced thrombosis. Brain Sciences, vol. 11, no. 3, article 325. https://www.doi.org/10.3390/brainsci11030325 (In English)

Sharonova, I. N., Bukanova, Yu. V., Myasoedov, N. F., Skrebitskii, V. G. (2018) Modulation of gaba- and glycine-activated ionic currents with Semax in isolated cerebral neurons. Bulletin of Experimental Biology and Medicine, vol. 164, no. 5, pp. 612–616. https://www.doi.org/10.1007/s10517-018-4043-8 (In English)

Slominskij, P. A., Shadrina, M. I. (2018) Peptidnye lekarstvennye sredstva: vozmozhnosti, perspektivy i ogranicheniya [Peptide pharmaceuticals: Opportunities, prospects and limitations]. Molekulyarnaya genetika, mikrobiologiya i virusologiya — Molecular Genetics, Microbiology and Virology, vol. 36, no. 1, pp. 8–14. https://www.doi.org/10.18821/0208-0613-2018-36-1-8-14 (In Russian)

Stavchanskii, V. V., Tvorogova, T. V., Botsina A. Yu. et al. (2011) The effect of semax and its c-terminal peptide PGP on expression of the neurotrophins and their receptors in the rat brain during incomplete global ischemia. Molecular Biology, vol. 45, no. 6, pp. 941–949. https://www.doi.org/10.1134/S0026893311050128 (In English)

Storozhevykh, T. P., Tukhbatova, G. R., Senilova, Yu. E. et al. (2007) Effects of semax and its Pro-Gly-Pro fragment on calcium homeostasis of neurons and their survival under conditions of glutamate toxicity. Bulletin of Experimental Biology and Medicine, vol. 143, no. 5, pp. 601–604. https://www.doi.org/10.1007/s10517-007-0192-x (In English)

Sudarkina, O. Yu., Filippenkov, I. B., Stavchansky, V. V. et al. (2021) Brain protein expression profile confirms the protective effect of the ACTH(4-7)PGP peptide (semax) in a rat model of cerebral ischemia-reperfusion. International Journal of Molecular Sciences, vol. 22, no. 12, article 6179. https://www.doi.org/10.3390/ijms22126179 (In English)

Svishcheva, M. V., Mishina, Ye. S., Medvedeva, O. A. et al. (2021) Morphofunctional state of the large intestine in rats under conditions of restraint stress and administration of peptide ACTH(4-7)-PGP (semax). Bulletin of Experimental Biology and Medicine, vol. 170, no. 3, pp. 384–388. https://www.doi.org/10.1007/s10517-021-05072-z (In English)

Svishcheva, M. V., Mukhina, A. Yu., Medvedeva, O. A. et al. (2020) Composition of colon microbiota in rats treated with ACTH(4-7)-PGP Peptide (semax) under conditions of restraint stress. Bulletin of Experimental Biology and Medicine, vol. 169, no. 3, pp. 357–360. https://www.doi.org/10.1007/s10517-020-04886-7 (In English)

Uchakina, O. N., Uchakin, P. N., Mezentseva, M. V. et al. (2006) Immunocorrection of altered cytokine production in neurological patients. FASEB Journal, vol. 20, no. 5, article A1128. https://doi.org/10.1096/fasebj.20.5.A1128-c (In English)

Volodina, M. A., Sebentsova, E. A., Glazova, N. Yu. et al. (2012) Semax attenuates the influence of neonatal maternal deprivation on the behavior of adolescent white rats. Bulletin of Experimental Biology and Medicine, vol. 152, no. 5, pp. 560–563. https://www.doi.org/10.1007/s10517-012-1574-2 (In English)

Vorvul’, A. O., Bobyntsev, I. I., Svishcheva, M. V. et al. (2021) Peptid AKTG4–7-PGP korrigiruet povedenie i uroven’ kortikosterona u krys v usloviyakh khronicheskogo stressa [Peptide ACTH4–7-PGP ameliorates behaviour and stabilize corticosterone level in rats affected with chronic stress]. Rossijskij fiziologicheskij zhurnal im. I. M. Sechenova — Russian Journal of Physiology, vol. 107, no. 11, pp. 1359–1371. https://www.doi.org/10.31857/S0869813921110108 (In Russian)

Vyunova, T. V., Andreeva, L. A., Shevchenko, K. V. et al. (2008) Binding of tripeptide Pro-Gly-Pro labeled at the C-terminal proline residue to plasma membranes of the rat forebrain. Doklady Biological Sciences, vol. 419, no. 1, pp. 95–96. https://www.doi.org/10.1134/S0012496608020075 (In English)

Vyunova, T. V., Andreeva, L. A., Shevchenko, K. V. et al. (2014) Characteristic features of specific binding of pentapeptide HFPGP labeled at the C-terminal proline residue to rat forebrain plasma membranes. Doklady Biochemistry and Biophysics, vol. 456, no. 1, pp. 101–103. https://www.doi.org/10.1134/S1607672914030077 (In English)

Vyunova, T. V., Andreeva, L. A., Shevchenko, K. V., Myasoedov, N. F. (2019) An integrated approach to study the molecular aspects of regulatory peptides biological mechanism. Journal of Labelled Compounds and Radiopharmaceuticals, vol. 62, no. 12, pp. 812–822. https://www.doi.org/10.1002/jlcr.3785 (In English)

Yasnetsov, V. V., Voronina, T. A. (2010) Antigipoksicheskij i antiamnesticheskij effekty meksidola i semaksa [Antihypoxic and antiamnesic effects of mexidol and semax]. Eksperimental’naya i klinicheskaya farmakologiya — Experimental and Clinical Pharmacology, vol. 73, no. 4, pp. 2–7. (In Russian)

Yatsenko, K. A., Glazova, N. Yu., Inozemtseva, L. S. et al. (2013) Heptapeptide Semax attenuates the effects of chronic unpredictable stress in rats. Doklady Biological Sciences, vol. 453, no. 1, pp. 353–357. https://www.doi.org/10.1134/S0012496613060161 (In English)

Zhuikova, S. E. (2020) Gliproliny — regulyatornye peptidy s integrativnym dejstviem [Glyprolines: Regulatory peptides with an integrative action]. Integrativnaya fiziologiya — Integrative Physiology, vol. 1, no. 4, p. 303–316. https://doi.org/10.33910/2687-1270-2020-1-4-303-316 (In Russian)

Zhuikova, S. E., Badmaeva, K. E., Samonina, G. E., Plesskaya, L. G. (2003a) Semaks i nekotorye gliprolinovye peptidy uskoryayut zazhivlenie atsetatnykh yazv u krys [Semax and some glyproline peptides accelerate the healing of acetic ulcers in rats]. Eksperimental’naya i klinicheskaya gastroenterologiya — Experimental and Clinical Gastroenterology, no. 4. pp. 88–91. (In Russian)

Zhuikova, S. E., Khropycheva, R. P., Zolotarev, V. A. et al. (2003b) Novye peptidnye regulyatory zheludochnoj sekretsii krys (amilin, PGP i semaks) [New peptide regulators of gastric secretion in rats (amylin, PGP and semax)]. Eksperimental’naya i klinicheskaya gastroenterologiya — Experimental and Clinical Gastroenterology, no. 2, pp. 86–90. (In Russian)

Zhuikova, S. E., Samonina, G. E. (2002) Gomeostaz slizistoj obolochki zheludka i krovotok. Soobshchenie 2. Rol’ ishemii v narushenii gomeostaza slizistoj obolochki zheludka [Gastric mucosal homeostasis and blood flow. The part 2. The role of ishemia in gastric mucosa homeostasis]. Uspekhi fiziologicheskikh nauk, vol. 33, no. 1, pp. 77–87. (In Russian)

Zhuikova, S. E., Sergeev, V. I., Samonina, G. E., Myasoedov, N. F. (2002) Possible mechanism underlying the effect of Semax on the formation of indomethacin-induced ulcers in rats. Bulletin of Experimental Biology and Medicine, vol. 133, no. 6, pp. 577–579. https://www.doi.org/10.1023/a:1020285909696 (In English)

Zhuikova, S. E., Smirnova, E. A., Bakaeva, Z. V. et al. (2000) Effect of Semax on homeostasis of gastric mucosa in albino rats. Bulletin of Experimental Biology and Medicine, vol. 130, no. 9, pp. 871–873. (In English)

Zolotarev, Yu. A., Dadaian, A. K., Dolotov, O. V. et al. (2006) Ravnomerno mechennye tritiem peptidy v issledovaniyakh po ikh biodegradatsii in vivo i in vitro. [Evenly tritium-labeled peptides in study of peptide in vivo and in vitro biodegradation]. Bioorganicheskaya khimiya — The Russian Journal of Bioorganic Chemistry, vol. 32, no. 2, pp. 183–191. (In Russian)

Zolotarev, Yu. A., Zhuikova, S. E., Ashmarin, I. P. (2003) Metabolism of PGP peptide after administration via different routes. Bulletin of Experimental Biology and Medicine, vol. 135, no. 4, pp. 361–364. https://www.doi.org/10.1023/a:1024612831380 (In English)

Загрузки

Опубликован

30.08.2022

Выпуск

Раздел

Обзоры