Сравнительный аспект нейроиммунологического влияния интерферона и дефенсина на активность афферентного синапса вестибулярного аппарата

Авторы

DOI:

https://doi.org/10.33910/2687-1270-2023-4-1-111-121

Ключевые слова:

вестибулярный аппарат, волосковые клетки, глутаматергический синапс, нейроиммуномодуляция, интерферон, дефенсин, опиатные рецепторы

Аннотация

Синаптические процессы в вестибулярной системе подвержены влиянию многочисленных экзогенных и эндогенных факторов, одними из которых являются активные молекулы врожденного и адаптивного иммунитета. До недавнего времени считалось, что структуры внутреннего уха лишены своей специфической иммунной защиты из-за отсутствия лимфодренажа и наличия гематолабиринтного барьера. В норме количество иммунных клеток и концентрация провоспалительных цитокинов в структурах внутреннего уха находятся на крайне низком уровне, но значительно возрастают при патологии. Задача работы состояла в сравнительном изучении влияния провоспалительного цитокина интерферона (ИФН) и эндогенного нейтрофильного антибиотика дефенсина (ДЕФ) на афферентную глутаматергическую синаптическую передачу при помощи метода регистрации импульсной активности нерва, контактирующего с полукружным каналом (ramus ampulla posterior). ИФН (0,2–40 нг/мл) в зависимости от концентрации вызывал увеличение частоты фоновой импульсной активности афферентных волокон, которое при высоких концентрациях сопровождалось последующим уменьшением частоты разрядов. ДЕФ (0,001–10 нМ), оказывал противоположное действие, понижая частоту фоновой импульсной активности афферентных волокон. Как ИФН, так и ДЕФ уменьшали амплитуду ответа на аппликацию глутамата и NMDA относительно нового, ими измененного уровня фоновой активности. Данные свидетельствуют о полифункциональном нейромодулирующем влиянии иммунной системы на синаптические процессы внутреннего уха.

Библиографические ссылки

Altun, Z., Olgun, Y., Ercetin, P. et al. (2014) Protective effect of acetyl-l-carnitine against cisplatin ototoxicity: Role of apoptosis-related genes and pro-inflammatory cytokines. Cell Proliferation, vol. 47, no. 1, pp. 72–80. https://doi.org/10.1111/cpr.12080 (In English)

Aminpour, S., Tinling, S. P., Brodie, H. A. (2005) Role of tumor necrosis factor-α in sensorineural hearing loss after bacterial meningitis. Otology & Neurotology, vol. 26, no. 4, pp. 602–609. https://doi.org/10.1097/01.mao.0000178121.28365.0d (In English)

Andrianov, G. N., Ryzhova, I. V., Tobias, T. V. (2009) Dopaminergic modulation of afferent synaptic transmission in the semicircular canals of frog. Neuro-Signals, vol. 17, no. 3, pp. 222–228. https://doi.org/10.1159/000224632 (In English)

Azimova, V. T., Potaturkina-Nesterova, N. I., Nesterov, A. S. (2015) Endogennye antimikrobnye peptidy cheloveka [Human endogenous antimicrobialpeptides (literature review)]. Sovremennye problemy nauki i obrazovaniya — Modern Problems of Science and Education, no. 1-1. [Online]. Available at: https://science-education.ru/ru/article/view?id=17746 (accessed 02.01.2023). (In Russian)

Baek, M.-J., Park, H.-M., Johnson, J. M. et al. (2006) Increased frequencies of cochlin-specific T cells in patients with autoimmune sensorineural hearing loss. The Journal of Immunology, vol. 177, no. 6, pp. 4203–4210. https://doi.org/10.4049/jimmunol.177.6.4203 (In English)

Barbieri, M. A., Cicala, G., Cutroneo, P. M. et al. (2019) Ototoxic adverse drug reactions: A disproportionality analysis using the Italian spontaneous reporting database. Frontiers in Pharmacology, vol. 10, article 1161. https://doi.org/10.3389/fphar.2019.01161 (In English)

Bonsacquet, J., Brugeaud, A., Compan, V. et al. (2006) AMPA type glutamate receptor mediates neurotransmission at turtle vestibular calyx synapse. The Journal of Physiology, vol. 576, no. 1, pp. 63–71. https://doi.org/10.1113/jphysiol.2006.116467 (In English)

Cohen, B., Novick, D., Barak, S., Rubinstein, M. (1995) Ligand-induced association of the type I interferon receptor components. Molecular and Cellular Biology, vol. 15, no. 8, pp. 4208–4214. https://doi.org/10.1128/MCB.15.8.4208 (In English)

Erhardt, S., Schwieler, L., Nilsson, L. et al. (2007) The kynurenic acid hypothesis of schizophrenia. Physiology & Behavior, vol. 92, no. 1–2, pp. 203–209. https://doi.org/10.1016/j.physbeh.2007.05.025 (In English)

Flook, M., Frejo, L., Gallego-Martinez, A. et al. (2019) Differential proinflammatory signature in vestibular migraine and meniere disease. Frontiers in Immunology, vol. 10, article 1229. https://doi.org/10.3389/fimmu.2019.01229 (In English)

Fujioka, M., Kanzaki, S., Okano, H. J. et al. (2006) Proinflammatory cytokines expression in noise-induced damaged cochlea. Journal of Neuroscience Research, vol. 83, no. 4, pp. 575–583. https://doi.org/10.1002/jnr.20764 (In English)

Fujioka, M., Okano, H., Ogawa, K. (2014) Inflammatory and immune responses in the cochlea: Potential therapeutic targets for sensorineural hearing loss. Frontiers in Pharmacology, vol. 5, article 287. https://doi.org/10.3389/fphar.2014.00287 (In English)

Haroon, E., Woolwine, B. J., Chen, X. et al. (2014) IFN-alpha-induced cortical and subcortical glutamate changes assessed by magnetic resonance spectroscopy. Neuropsychopharmacology, vol. 39, no. 7, pp. 1777–1785. https://doi.org/10.1038/npp.2014.25 (In English)

Highstein, S. M., Holstein, G. R., Mann, M. A., Rabbit, R. D. (2014) Evidence that protons act as neurotransmitters at vestibular hair cell-calyx afferent synapses. Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 14, pp. 5421–5426. https://doi.org/10.1073/pnas.1319561111 (In English)

Highstein, S. M., Mann, M. A., Holstein, G. R., Rabbit, R. D. (2015) The quantal component of synaptic transmission from sensory hair cells to the vestibular calyx. Journal of Neurophysiology, vol. 113, no. 10, pp. 3827–3835. https://doi.org/10.1152/jn.00055.2015 (In English)

Holt, J. C., Chatlani, S., Lysakowski, A., Goldberg, J. M. (2007) Quantal and nonquantal transmission in calyx-bearing fibers of the turtle posterior crista. Journal of Neurophysiology, vol. 98, no. 3, pp. 1083–1101. https://doi.org/10.1152/jn.00332.2007 (In English)

Hosseini, S., Michaelsen-Preusse, K., Grigoryan, G. et al. (2020) Type I interferon receptor signaling in astrocytes regulates hippocampal synaptic plasticity and cognitive function of the healthy CNS. Cell Reports, vol. 31, no. 7, article 107666. https://doi.org/10.1016/j.celrep.2020.107666 (In English)

González-Garrido, A., Vega, R., Mercado, F. et al. (2015) Acid-Sensing ion channels expression, identity and role in the excitability of the cochlear afferent neurons. Frontiers in Cellular Neuroscience, vol. 9, article 483. https://doi.org/10.3389/fncel.2015.00483 (In English)

Jiang, M., Taghizadeh, F., Steyger, P. S. (2017) Potential mechanisms underlying inflammation-enhanced aminoglycoside-induced cochleotoxicity. Frontiers in Cellular Neuroscience, vol. 11, article 362. https://doi.org/10.3389/fncel.2017.00362 (In English)

Landegger, L. D., Vasilijic, S., Fujita, T. et al. (2019) Cytokine levels in inner ear fluid of young and aged mice as molecular biomarkers of noise-induced hearing loss. Frontiers in Neurology, vol. 10, article 977. https://doi.org/10.3389/fneur.2019.00977 (In English)

Lassaletta, L., Calvino, M., Morales-Puebla, J. M. et al. (2019) Biomarkers in vestibular schwannoma-associated hearing loss. Frontiers in Neurology, vol. 10, article 978. https://doi.org/10.3389/fneur.2019.00978 (In English)

Liu, C. C., Gao, Y. J., Luo, H. et al. (2016) Interferon alpha inhibits spinal cord synaptic and nociceptive transmission via neuronal-glial interactions. Scientific Reports, vol. 6, article 34356. https://doi.org/10.1038/srep34356 (In English)

Liu, W., Kämpfe Nordström, C., Danckwardt-Lillieström, N. et al. (2019) Human inner ear immune activity: A super-resolution immunohistochemistry study. Frontiers in Neurology, vol. 10, article 728. https://doi.org/10.3389/fneur.2019.00728 (In English)

Loseva, E. V., Loginova, N. A., Akmaev, I. G. (2008) Rol’ interferona-al’fa v regulyatsii funktsij nervnoj sistemy [The role of interferon-alpha in regulation of nervous system functions]. Uspekhi fiziologicheskikh nauk, vol. 39, no. 2, pp. 32–46. (In Russian)

Mendes-Corrêa, M. C. J., Bittar, R. S. M., Salmito, N., Oitictca, J. (2011) Pegylated interferon/ribavirin-associated sudden hearing loss in a patient with chronic hepatitis C in Brazil. The Brazilian Journal of Infectious Diseases, vol. 15, no. 1, pp. 87–89. https://doi.org/10.1016/s1413-8670(11)70147-7 (In English)

Miller, A. H., Haroon, E., Raison, C. L., Felger, J. C. (2013) Cytokine targets in the brain: Impact on neurotransmitters and neurocircuits. Depression and Anxiety, vol. 30, no. 4, pp. 297–306. https://doi.org/10.1002/da.22084 (In English)

Moser, T., Brandt, A., Lysakowski, A. (2006) Hair cell ribbon synapses. Cell and Tissue Research, vol. 326, no. 2, pp. 347–359. https://doi.org/10.1007/s00441-006-0276-3 (In English)

Nouvian, R., Beutner, D., Parsons, T. D., Moser, T. (2006) Structure and function of the hair cell ribbon synapse. The Journal of Membrane Biology, vol. 209, no. 2–3, pp. 153–165. https://doi.org/10.1007/s00232-005-0854-4 (In English)

Panchenko, L. F., Alyab’eva, T. N., Malinovskaya, V. V., Balashov, A. M. (1987) Vzaimodejstvie al’fa-interverona s opiatnymi retseptorami v mozge krys [Alpha interferon interaction with opiate receptors in the rat brain]. Byulleten’ eksperimental’noj biologii i meditsiny, vol. 104, no. 7, pp. 87–89. (In Russian)

Qin, Z.-F., Hou, D.-Y., Fang, Y.-Q. et al. (2012) Interferon-Alpha enhances excitatory transmission in substantia gelatinosa neurons of rat spinal cord. Neuroimmunomodulation, vol. 19, no. 4, pp. 235–240. https://doi.org/10.1159/000335167 (In English)

Rai, V., Wood, M. B., Feng, H. et al. (2020) The immune response after noise damage in the cochlea is characterized by a heterogeneous mix of adaptive and innate immune cells. Scientific Reports, vol. 10, no. 1, article 15167. https://doi.org/10.1038/s41598-020-72181-6 (In English)

Raison, C. L., Dantzer, R., Kelley, K. W. et al. (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-α: Relationship to CNS immune responses and depression. Molecular Psychiatry, vol. 15, no. 4, pp. 393–403. https://doi.org/10.1038/mp.2009.116 (In English)

Raj, P. A., Dentino, A. R. (2002) Current status of defensins and their role in innate and adaptive immunity. FEMS Microbiology Letters, vol. 206, no. 1, pp. 9–18. https://doi.org/10.1111/j.1574-6968.2002.tb10979.x (In English)

Reeves, K. C., Shah, N., Muñoz, B., Atwood, B. K. (2022) Opioid receptor-mediated regulation of neurotransmission in the brain. Frontiers in Molecular Neuroscience, vol. 15, article 919773. https://doi.org/10.3389/fnmol.2022.919773 (In English)

Ryzhova, I. V., Nozdrachev, A. D., Tobias, T. V., Vershinina, E. A. (2018) Soluble guanylate cyclase as the key enzyme in the modulating effect of NO on metabotropic glutamate receptors. Acta Naturae, vol. 10, no. 2, pp. 71–78. https://pubmed.ncbi.nlm.nih.gov/30116618. (In English)

Ryzhova, I. V., Tobias, T. V. Andrianov, Yu. N., Nozdrachev, A. D. (2013) Rol’ opiatnykh retseptorov v mekhanizme nejromoduliruyushchego vliyaniya endogennogo antibiotika defensina v vestibulyarnom epitelii lyagushki [The role of opiate receptors in the mechanism of neuromodulation of endogenic antibiotic defensine in the frog vestibular epithelium]. Meditsinskij akademicheskij zhurnal — Medical Academic Journal, vol. 13, no. 3, pp. 97–105. (In Russian)

Ryzhova, I. V., Tobias, T. V., Nozdrachev, A. D. (2020) Antagonists D1 and D2 of dopamine receptors determine different mechanisms of neuroprotective action in the frog vestibular. Doklady Biochemistry and Biophysics, vol. 492, no. 1, pp. 139–141. https://doi.org/10.1134/S1607672920030084 (In English)

Sadeghi, S. G., Pyott, S. J., Yu, Z., Glowatzki, E. (2014) Glutamatergic signaling at the vestibular hair cell calyx synapse. Journal of Neuroscience, vol. 34, no. 44, pp. 14536–14550. https://doi.org/10.1523/JNEUROSCI.0369-13.2014 (In English)

Sharifian, M. R., Kamandi, S., Sima, H. R. et al. (2013) INF-α and ototoxicity. BioMed Research International, vol. 2013, article 295327. https://doi.org/10.1155/2013/295327 (In English)

Shi, X. (2016) Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hearing Research, vol. 338, pp. 52–63. https://doi.org/10.1016/j.heares.2016.01.010 (In English)

Svrakic, M., Pathak, S., Goldofsky, E. et al. (2012) Diagnostic and prognostic utility of measuring tumor necrosis factor in the peripheral circulation of patients with immune-mediated sensorineural hearing loss. Archives of Otolaryngology — Head & Neck Surgery, vol. 138, no. 11, pp. 1052–1058. https://doi.org/10.1001/2013.jamaoto.76 (In English)

Zhang, W., Dai, M., Fridberger, A. et al. (2012) Perivascular-resident macrophage-like melanocytes in the inner ear are essential for the integrity of the intrastrial fluid-blood barrier. Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 26, pp. 10388–10393. https://doi.org/10.1073/pnas.1205210109 (In English)

Zhang, J., Chen, S., Hou, Z. et al. (2015) Lipopolysaccharide-induced middle ear inflammation disrupts the cochlear intra-strial fluid-blood barrier through down-regulation of tight junction proteins. PloS One, vol. 10, no. 3, article e0122572. https://doi.org/10.1371/journal.pone.0122572 (In English)

Zou, J., Pyykkö, I., Sutinen, P., Toppila, E. (2005) Vibration induced hearing loss in guinea pig cochlea: Expression of TNF-α and VEGF. Hearing Research, vol. 202, no. 1–2, pp. 13–20. https://doi.org/10.1016/j.heares.2004.10.008 (In English)

Опубликован

06.04.2023

Выпуск

Раздел

Экспериментальные статьи