Пренатальное влияние буспирона в модели гипоксического стресса на пространственное обучение, память и физиологический ответ у взрослых самцов и самок крыс

Авторы

DOI:

https://doi.org/10.33910/2687-1270-2024-5-1-60-71

Ключевые слова:

пренатальный буспирон или/и гипоксия, долговременное влияние, пространственное обучение и память, кортикостерон, половой диморфизм

Аннотация

Влияние анксиолитика и антидепрессанта буспирона (агонист серотонинергического 5-HT1A рецептора), используемого для лечения тревожно-депрессивного состояния женщин во время беременности, на адаптивное поведение потомства является вопросом дискуссии. Изучение внутриутробного влияния сочетания буспирона и гипоксии, имеющего место в неонатальной клинике, на когнитивную сферу и стрессорный ответ, особенно у взрослых разнополых особей, важно для неонатологов в прогностическом аспекте. Мы впервые исследовали эффект хронического введения буспирона, умеренной острой нормобарической гипоксии и их взаимодействия в пренатальный период развития на пространственное обучение, память и реактивность гипоталамо-гипофизарно- адренокортикальной системы (ГГАКС), а также массу тела у взрослых самцов и самок крыс. Каждый пренатальный фактор в отдельности не ухудшил способность к пространственному обучению и память у крыс обоего пола. Взаимодействие буспирона и гипоксии ослабило выявленное улучшенное влияние гипоксии на пространственное обучение у самцов и эффективность пространственной долговременной памяти у самок, что сочеталось у последних со снижением стрессорного ответа кортикостерона в плазме крови. У самцов во влиянии пренатальных воздействий не было обнаружено изменений в эффективности пространственной памяти и реактивности ГГАКС. У крыс обоего пола совместное действие пренатальных факторов снизило эффективность пространственной долговременной памяти по сравнению с эффективностью пространственной памяти в первый день тестирования. Пренатальный буспирон вызвал снижение массы тела у крыс обоего пола. Обнаруженный половой диморфизм в действии пренатальных факторов на когнитивную сферу и реактивность ГГАКС у взрослых крыс может указывать на различные изменения нейрональной пластичности в областях гиппокампа, участвующих в пространственном обучении и памяти, в зависимости от половой принадлежности.

Библиографические ссылки

Albert, P. R., Vahid-Ansari, F. (2019) The 5-HT1A receptor: Signaling to behavior. Biochimie, vol. 161, pp. 34–45. https://doi.org/10.1016/j.biochi.2018.10.015 (In English)

Andrade, E. (2023) Neonatal hypoxic ischemic encephalopathy. Progress and new treatments according to the pathophysiological basis of the injury. Medicina (B Aires), vol. 83, suppl. 4, pp. 25–30. https://pubmed.ncbi.nlm.nih.gov/37714119 (In English)

Andrews, M. H., Matthews, S. G. (2004) Programming of the hypothalamo-pituitary-adrenal axis: Serotonergic involvement. Stress, vol. 7, no. 1, pp. 15–27. https://doi.org/10.1080/10253890310001650277 (In English)

Bombardi, C., Grandis, A., Pivac, N. et al. (2021) Serotonin modulation of hippocampal functions: From anatomy to neurotherapeutics. Progress in Brain Research, vol. 261, pp. 83–158. https://doi.org/10.1016/bs.pbr.2021.01.031 (In English)

Bond, A. M., Ming, G-l., Song, H. (2022) What is the relationship between hippocampal neurogenesis across different stages of the lifespan? Frontiers in Neuroscience, vol. 16, article 89171391713. https://doi.org/10.3389/fnins.2022.891713 (In English)

Bowman, R., Frankfurt, M., Luine, V. (2022) Sex differences in cognition following variations in endocrine status. Learning and Memory, vol. 29, no. 9, pp. 234–245. https://doi.org/10.1101/lm.053509.121 (In English)

Brummelte, S., Mc Glanaghy, E., Bonnin, A. et al. (2017) Developmental changes in serotonin signaling: Implications for early brain function, behavior and adaptation. Neuroscience, vol. 342, pp. 212–231. https://doi.org/10.1016/j.neuroscience.2016.02.037 (In English)

Buller, K. M., Wixey, J. A., Reinebrant, H. E. (2012) Disruption of the serotonergic system after neonatal hypoxia-ischemia in a rodent model. Neurology Research International, vol. 2012, article 650382. https://doi.org/10.1155/2012/650382 (In English)

Carneiro, I. B. C., Toscano, A. E., da Cunha, M. S. B. (2022) Serotonergic mechanisms associated with experimental models of hypoxia: Aa systematic review. International Journal of Developing Neuroscience, vol. 82, no. 8, pp. 668–67980. https://doi.org/10.1002/jdn.10226 (In English)

De Kloet, E. R., Meijer, O. C., de Nicola, A. F. et al. (2018) Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Frontiers in Neuroendocrinology, vol. 49, pp. 124–145. https://doi.org/10.1016/j.yfrne.2018.02.003 (In English)

Desorcy-Scherer, K., Fricke, H. P., Hernandez, L. L. (2024) Selective serotonin reuptake inhibitors during pregnancy and lactation: A scoping review of effects on the maternal and infant gut microbiome. Developmental Psychobiology, vol. 66, no. 1, article e22441. https://doi.org/10.1002/dev.22441 (In English)

Dubrovskaya, N. M., Zhuravin, I. A. (2010) Ontogenetic characteristics of behavior in rats subjected to hypoxia on day 14 or day 18 of embryogenesis. Neuroscience and Behavior Physiology, vol. 40, no. 2, pp. 231–238. https://doi.org/10.1007/s11055-009-9235-2 (In English)

Dundee, J. M., Puigdellívol, M., Butler, R., Brown, G. C. et al. (2023) P2Y6 Receptor-dependent microglial phagocytosis of synapses during development regulates synapse density and memory. The Journal of Neuroscience, vol. 43, no. 48, pp. 8090–8103. https://doi.org/10.1523/JNEUROSCI.1089-23.2023 (In English)

Dutta, A., Sarkar, P., Shrivastava, S., Chattopadhyay, A et al. (2022) Effect of hypoxia on the function of the human serotonin1A receptor. ACS Chemical Neuroscience, vol. 13, no. 9, pp. 1456–-1466. https://doi.org/10.1021/acschemneuro.2c00181 (In English)

Freeman, M. P., Szpunar, M. J., Kobylski, L. A. et al. (2022) Pregnancy outcomes after first-trimester exposure to buspirone: Prospective longitudinal outcomes from the MGH National Pregnancy Registry for Psychiatric Medications. Archives of Women’s Mental Health, vol. 25, no. 5, pp. 923–928. https://doi.org/10.1007/s00737-022-01250-8 (In English)

Gajardo, I., Guerra, S., Campusano, J. M. (2023) Navigating like a fly: Drosophila melanogaster as a model to explore the contribution of serotonergic neurotransmission to spatial navigation. International Journal of Molecular Science, vol. 24, no. 5, article 4407. https://doi.org/10.3390/ijms24054407 (In English)

Glikmann-Johnston, Y., Saling, M. M., Chen, J. et al. (2015) Hippocampal 5-HT1A receptor binding is related to object-location memory in humans. Brain Structure Function, vol. 220, no. 1, pp. 559–570. https://doi.org/10.1007/s00429-013-0675-7 (In English)

Gregus, A. M., Levine, I. S., Eddinger, K. A. et al. (2021) Sex differences in neuroimmune and glial mechanisms of pain. Pain, vol. 162, no. 8, pp. 2186–2200. https://doi.org/10.1097/j.pain.0000000000002215 (In English)

Hagena, H., Manahan-Vaughan, D. (2022) Role of mGlu5 in persistent forms of hippocampal synaptic plasticity and the encoding of spatial experience. Cells, vol. 11, no. 21, article 3352. https://doi.org/10.3390/cells11213352 (In English)

Hanswijk, S. I., Spoelder, M., Shan, L. et al. (2020) Gestational factors throughout fetal neurodevelopment: The serotonin link. International Journal of Molecular Science, vol. 21, no. 16, article 5850. https://doi.org/10.3390/ijms21165850 (In English)

Haubrich, J., Hagena, H., Tsanov, M., Manahan-Vaughan, D. (2023) Editorial: Dopaminergic control of experience encoding, memory and cognition. Frontiers in Behavioral Neuroscience. Section Learning and Memory, vol. 17, article 1230576. https://doi.org/10.3389/fnbeh.2023.1230576 (In English)

Kempermann, G. (2022) What is adult hippocampal neurogenesis good for? Frontiers in Neuroscience, vol. 16, article 852680. https://doi.org/10.3389/fnins.2022.852680 (In English)

Khozhai, L. I., Otellin, V. A. (2022) Distribution of GABAergic neurons and expression levels of GABA transporter 1 in the rat neocortex during the neonatal period after perinatal hypoxic exposure. Journal of Evolutionary Biochemistry and Physiology, vol. 58, no. 6, pp. 1687–1696. https://doi.org/10.1134/S0022093022060023 (In English)

Kim, E. J., Kim, J. J. (2023) Neurocognitive effects of stress: A metaparadigm perspective. Molecular Psychiatry, vol. 28, no. 7, pp. 2750–2763. https://doi.org/10.1038/s41380-023-01986-4 (In English)

Lafta, M. S., Mwinyi, J., Affatato, O., Rukh, G. et al. (2024) Exploring sex differences: Iinsights into gene expression, neuroanatomy, neurochemistry, cognition, and pathology. Frontiers in Neuroscience, vol. 18, article 2024. https://doi.org/10.3389/fnins.2024.1340108 (In English)

Lim, L. W., Temel, Y., Sesia, T. et al. (2008) Buspirone induced acute and chronic changes of neural activation in the periaqueductal gray of rats. Neuroscience, vol. 155, no. 1, pp. 164–173. https://doi.org/10.1016/j.neuroscience.2008.05.038 (In English)

Lisman, J., Buzsáki, G., Eichenbaum, H. et al. (2017) Viewpoints: How the hippocampus contributes to memory, navigation and cognition. Natureional Neuroscience, vol. 20, no. 11, pp. 1434–1447. https://doi.org/10.1038/nn.4661 (In English)

Mabry, S., Wilson, E. N., Bradshaw, J. L. et al. (2023) Sex and age differences in social and cognitive function in offspring exposed to late gestational hypoxia. Biology of Sex Differences, vol. 14, no. 1, article 81. https://doi.org/10.1186/s13293-023-00557-0 (In English)

Mikhailenko, V. A., Butkevich, I. P., Vershinina, E. A. (2023) Effects of neonatal hypoxia and antidepressant fluoxetine on cognitive and stress-hormonal functions in adult rats. Journal of Evolutionary Biochemistry and Physiology, vol. 59, no. 3, pp. 687–700. https://doi.org/10.1134/S0022093023030031 (In English)

Nalivaeva, N. N., Turner, A. J., Zhuravin, I. A. (2018) Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration. Frontiers in Neuroscience, vol. 12, article 825. https://doi.org/10.3389/fnins.2018.00825 (In English)

Patel, T. D., Zhou, F. C. (2005) Ontogeny of 5-HT1A receptor expression in the developing hippocampus. Brain Research Developmental Brain Research, vol. 157, no. 1, pp. 42–57. https://doi.org/10.1016/j.devbrainres.2005.03.006 (In English)

Post, T. E., Heijn, L. G., Jordan, J., van Gerven, J. M. A. (2023) Sensitivity of cognitive function tests to acute hypoxia in healthy subjects: Aa systematic literature review. Frontiers in Physiology, vol. 14, article 1244279. https://doi. org/10.3389/fphys.2023.1244279 (In English)

Rybnikova, E. A., Nalivaeva, N. N. (2021) Glucocorticoid-dependent mechanisms of brain tolerance to hypoxia. International Journal Molecular Science, vol. 22, no. 15, article 17982. https://doi.org/10.3390/ijms22157982 (In English)

Solís-Guillén, R., Leopoldo, M., Meneses, A. et al. (2021) Activation of 5-HT1A and 5-HT7 receptors enhanced a positively reinforced long-term memory. Behavioral Brain Research, vol. 397, article 112932. https://doi.org/10.1016/j.bbr.2020.112932 (In English)

Thorsness, K. R., Watson, C., LaRusso, E. M. (2018) Perinatal anxiety: Approach to diagnosis and management in the obstetric setting. American Journal of Obstetrics and Gynecology, vol. 219, no. 4, pp. 326–345. https://doi.org/10.1016/j.ajog.2018.05.017 (In English)

Vetrovoy, O., Stratilov, V., Nimiritsky, P. et al. (2021) Prenatal hypoxia induces premature aging accompanied by impaired function of the glutamatergic system in rat hippocampus. Neurochemical Research, vol. 46, no. 3, pp. 550–563. https://doi.org/10.1007/s11064-020-03191-z (In English)

Wang, B., Zeng, H., Liu, J., Sun, M. (2021) Effects of prenatal hypoxia on nervous system development and related diseases. Frontiers in Neuroscience, vol. 15, article 755554. https://doi.org/10.3389/fnins.2021.755554 (In English)

Yamada, R., Wada, A., Stickley, A. et al. (2023) Effect of 5-HT1A receptor partial agonists of the azapirone class as an add-on therapy on psychopathology and cognition in schizophrenia: A systematic review and meta-analysis. International Journal of Neuropsychopharmacology, vol. 26, no. 4, pp. 249–258. https://doi.org/10.1093/ijnp/pyad004 (In English)

Zhuravin, I. A., Dubrovskaya, N. M., Vasilev, D. S. et al. (2019) Prenatal hypoxia produces memory deficits associated with impairment of long-term synaptic plasticity in young rats. Neurobiology of Learning and Memory, vol. 164, article 107066. https://doi.org/10.1016/j.nlm.2019.107066 (In English)

Опубликован

01.07.2024

Выпуск

Раздел

Экспериментальные статьи