Постнатальное развитие слоев наружного коленчатого тела кошки
DOI:
https://doi.org/10.33910/2687-1270-2025-6-2-161-170Ключевые слова:
наружное коленчатое тело, перигеникулятное ядро, постнатальное развитие, кошка, NeuN, SMI-32, кальретинин, парвальбуминАннотация
Представлены результаты исследований постнатального развития зрительных таламических ядер кошки: дорзального ядра наружного коленчатого тела (НКТд) и перигеникулятного ядра (ПГЯ), во время пяти ключевых периодов развития: неонатального, докритического, пика и спада критического периода и зрелости. Нейрональные популяции изучены с помощью четырех нейрохимических маркеров: общего нейронального белка NeuN, Са2+-связывающего белка парвальбумина — маркера тормозных интернейронов, Са2+-связывающего белка кальретинина — маркера кониоцеллюлярных релейных нейронов у приматов и нефосфорилированных доменов тяжелых цепей нейрофиламентов — маркера магноцеллюлярных/Y релейных нейронов у приматов и кошки. Во время неонатального и докритического периодов выявлено несколько транзиторных нейрональных популяций, исчезающих во время критического периода: (1) крупные нейроны интерламинарного пространства НКТд, экспрессирующие NeuN и парвальбумин; (2) крупные нейроны слоев Сп НКТд, экспрессирующие кальретинин; (3) нейроны ПГЯ, экспрессирующие кальретинин. Также выявлено транзиторное подразделение А-слоев НКТд на подслои, организованные NeuN-иммунонегативными и NeuN-иммунопозитивными нейронами. Одномоментное существование вышеперечисленных популяций свидетельствует об их сопряженной работе во время докритического периода развития, определяемого в большей степени не зрительным окружением, но внутренними факторами.
Библиографические ссылки
Berardi, N., Morrone, M. C. (1984) Development of gamma-aminobutyric acid mediated inhibition of X cells of the cat lateral geniculate nucleus. Journal of Physiology, vol. 357, no. 1, pp. 525–537. https://doi.org/10.1113/jphysiol.1984.sp015515 (In English)
Bickford, M. E., Guido, W., Godwin, D. W. (1998) Neurofilament proteins in Y-cells of the cat lateral geniculate nucleus: Normal expression and alteration with visual deprivation. Journal of Neuroscience, vol. 18, no. 16, pp. 6549–6557. https://doi.org/10.1523/JNEUROSCI.18-16-06549.1998 (In English)
Bonds, A. B., Freeman, R. D. (1978) Development of optical quality in the kitten eye. Vision Research, vol. 18, no. 4, pp. 391–398. https://doi.org/10.1016/0042-6989(78)90048-2 (In English)
Bowling, D. B., Wieniawa-Narkiewicz, E. (1986) The distribution of on- and off-centre X- and Y-like cells in the A layers of the cat’s lateral geniculate nucleus. Journal of Physiology, vol. 375, no. 1, pp. 561–572. https://doi.org/10.1113/jphysiol.1986.sp016133 (In English)
Casagrande, V. A. (1994) A third parallel visual pathway to primate area V1. Trends in Neuroscience, vol. 17, no. 7, pp. 305–310. https://doi.org/10.1016/0166-2236(94)90065-5 (In English)
Celio, M. R. (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience, vol. 35, no. 2, pp. 375–475. https://doi.org/10.1016/0306-4522(90)90091-h (In English)
Chalupa, L. M. (2007) A reassessment of the role of activity in the formation of eye-specific retinogeniculate projections. Brain Research Reviews, vol. 55, no. 2, pp. 228–236. https://doi.org/10.1016/j.brainresrev.2007.03.003 (In English)
Chandra, A. J., Lee, S. C. S., Grünert, U. (2017) Thorny ganglion cells in marmoset retina: Morphological and neurochemical characterization with antibodies against calretinin. Journal of Comparative Neurology, vol. 525, no. 18, pp. 3962–3974. https://doi.org/10.1002/cne.24319 (In English)
Crowley, J. C., Katz, L. C. (2002) Ocular dominance development revisited. Current Opinion in Neurobiology, vol. 12, no. 1, pp. 104–109. https://doi.org/10.1016/S0959-4388(02)00297-0 (In English)
Demeulemeester, H., Arckens, L., Vandesande, F. et al. (1991) Calcium binding proteins as molecular markers for cat geniculate neurons. Experimental Brain Research, vol. 83, no. 3, pp. 513–520. https://doi.org/10.1007/BF00229828 (In English)
De Sousa, A. A., Sherwood, C. C., Hof, P. R., Zilles, K. (2013) Lamination of the lateral geniculate nucleus of catarrhine primates. Brain, Behavior and Evolution, vol. 81, no. 2, pp. 93–108. https://doi.org/10.1159/000346495 (In English)
Erişir, A., Van Horn, S. C., Sherman, S. M. (1998) Distribution of synapses in the lateral geniculate nucleus of the cat: Differences between laminae A and A1 and between relay cells and interneurons. Journal of Comparative Neurology, vol. 390, no. 2, pp. 247–255. https://doi.org/10.1002/(SICI)1096-9861(19980112)390:2<247::AID-CNE7>3.0.CO;2-1 (In English)
Fagiolini, M., Fritschy, J.-M., Löw, K. et al. (2004) Specific GABAA circuits for visual cortical plasticity. Science, vol. 303, no. 5664, pp. 1681–1683. https://doi.org/10.1126/science.1091032 (In English)
Ferster, D. (1990) X- and Y-mediated current sources in areas 17 and 18 of cat visual cortex. Visual Neuroscience, vol. 4, no. 2, pp. 135–145. https://doi.org/10.1017/S0952523800002297 (In English)
Fitzgibbon, T. (2002) Organization of reciprocal connections between the perigeniculate nucleus and dorsal lateral geniculate nucleus in the cat: A transneuronal transport study. Visual Neuroscience, vol. 19, no. 4, pp. 511–520. https://doi.org/10.1017/S0952523802194120 (In English)
FitzGibbon, T. (2007) Do first order and higher order regions of the thalamic reticular nucleus have different developmental timetables? Experimental Neurology, vol. 204, no. 1, pp. 339–354. https://doi.org/10.1016/j.expneurol.2006.11.012 (In English)
Gao, W. J., Wormington, A. B., Newman, D. E., Pallas, S. L. (2000) Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: Immunocytochemical localization of calbindin- and parvalbumin-containing neurons. Journal of Comparative Neurology, vol. 422, no. 1, pp. 140–157. https://doi.org/10.1002/(sici)1096-9861(20000619)422:1<140::aid-cne9>3.0.co;2-0 (In English)
Hendry, S. H. C., Reid, R. C. (2000) The koniocellular pathway in primate vision. Annual Review of Neuroscience, vol. 23, no. 1, pp. 127–153. https://doi.org/10.1146/annurev.neuro.23.1.127 (In English)
Hong, S.-K., Kim, J.-Y., Jeon, C.-J. (2002) Immunocytochemical localization of calretinin in the superficial layers of the cat superior colliculus. Neuroscience Research, vol. 44, no. 3, pp. 325–335. https://doi.org/10.1016/S0168-0102(02)00154-2 (In English)
Jeffries, A. M., Killian, N. J., Pezaris, J. S. (2014) Mapping the primate lateral geniculate nucleus: A review of experiments and methods. Journal of Physiology — Paris, vol. 108, no. 1, pp. 3–10. https://doi.org/10.1016/j.jphysparis.2013.10.001 (In English)
Kalil, R. (1978) Development of the dorsal lateral geniculate nucleus in the cat. Journal of Comparative Neurology, vol. 182, no. 2, pp. 265–291. https://doi.org/10.1002/cne.901820206 (In English)
Kato, N., Kawaguchi, S., Miyata, H. (1984) Geniculocortical projection to layer I of area 17 in kittens: Orthograde and retrograde HRP studies. Journal of Comparative Neurology, vol. 225, no. 3, pp. 441–447. https://doi.org/10.1002/cne.902250309 (In English)
Kaufman, D. L., Houser, C. R., Tobin, A. J. (1991) Two forms of the γ-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. Journal of Neurochemistry, vol. 56, no. 2, pp. 720–723. https://doi.org/10.1111/j.1471-4159.1991.tb08211.x (In English)
Kawano, J. (1998) Cortical projections of the parvocellular laminae C of the dorsal lateral geniculate nucleus in the cat: An anterograde wheat germ agglutinin conjugated to horseradish peroxidase study. Journal of Comparative Neurology, vol. 392, no. 4, pp. 439–457. https://doi.org/10.1002/(sici)1096-9861(19980323)392:4<439::aid-cne3>3.0.co;2-1 (In English)
Kutcher, M. R., Duffy, K. R. (2007) Cytoskeleton alteration correlates with gross structural plasticity in the cat lateral geniculate nucleus. Visual Neuroscience, vol. 24, no. 6, pp. 775–785. https://doi.org/10.1017/S095252380707068X (In English)
Lavezzi, A. M., Corna, M. F., Matturri, L. (2013) Neuronal nuclear antigen (NeuN): A useful marker of neuronal immaturity in sudden unexplained perinatal death. Journal of the Neurological Sciences, vol. 329, no. 1–2, pp. 45–50. https://doi.org/10.1016/j.jns.2013.03.012 (In English)
Le Vay, S., McConnell, S. K. (1982) ON and OFF layers in the lateral geniculate nucleus of the mink. Nature, vol. 300, no. 5890, pp. 350–351. https://doi.org/10.1038/300350a0 (In English)
Linden, D. C., Guillery, R. W., Cucchiaro, J. (1981) The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development. Journal of Comparative Neurology, vol. 203, no. 2, pp. 189–211. https://doi.org/10.1002/cne.902030204 (In English)
Martin, P. R., White, A. J. R., Goodchild, A. K. et al. (1997) Evidence that blue-on cells are part of the third geniculocortical pathway in primates. European Journal of Neuroscience, vol. 9, no. 7, pp. 1536–1541. https://doi.org/10.1111/j.1460-9568.1997.tb01509.x (In English)
McConnell, S. K., Ghosh, A., Shatz, C. J. (1989) Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science, vol. 245, no. 4921, pp. 978–982. https://doi.org/10.1126/science.2475909 (In English)
Merkulyeva, N. S. (2019) Provodyashchie kanaly zritel’noj sistemy. Osnovy klassifikatsii [Visual parallel channels. A basis of classification]. Zhurnal vysshej nervnoj deyatel’nosti im. I. P. Pavlova, vol. 69, no. 5, pp. 541–548. https://doi.org/10.1134/S004446771905006X (In Russian)
Merkulyeva, N. S. (2022) Provodyashchie kanaly zritel’noj sistemy. Tretij kanal [Conducting channels in the visual system. The third channel]. Neuroscience and Behavioral Physiology, vol. 52, no. 6, pp. 886–898. https://doi.org/10.1007/s11055-022-01313-4 (In English)
Merkulyeva, N. S., Kostareva, A., Mikhalkin, A. A. (2025) Neurons expressing calretinin in the developing feline dorsal lateral geniculate nucleus. The Anatomical Record. [In Print]. https://doi.org/10.1002/ar.25670 (In English)
Merkulyeva, N. S., Mikhalkin, A. A., Zykin, P. (2018) Early postnatal development of the lamination in the lateral geniculate nucleus A-layers in cats. Cellular and Molecular Neurobiology, vol. 38, no. 5, pp. 1137–1143. https://doi.org/10.1007/s10571-018-0585-6 (In English)
Merkulyeva, N. S., Mikhalkin, А. A., Kostareva, A., Vavilova, T. (2022) Transient neurochemical features of the perigeniculate neurons during early postnatal development of the cat. Journal of Comparative Neurology, vol. 530, no. 18, pp. 3193–3208. https://doi.org/10.1002/cne.25402 (In English)
Mikhalkin, A. A., Merkulyeva, N. S. (2023) Dorzal’noe yadro naruzhnogo kolenchatogo tela: anatomiya, gistologiya, ontogenez [The dorsal nucleus of the lateral geniculate body: Anatomy, histology, ontogenesis]. Neuroscience and Behavioral Physiology, vol. 53, no. 8, pp. 1410–1425. https://doi.org/10.1007/s11055-023-01534-1 (In English)
Mikhalkin, A. A., Nikitina, N. I., Merkulyeva, N. S. (2021) Heterochrony of postnatal accumulation of nonphosphorylated heavy-chain neurofilament by neurons of the cat dorsal lateral geniculate nucleus. Journal of Comparative Neurology, vol. 529, no. 7, pp. 1430–1441. https://doi.org/10.1002/cne.25028 (In English)
Mikhalkin, A. A., Nikitina, N. I., Merkulyeva, N. S. (2024) Early postnatal development of the primary visual areas 17 and 18 of the cat cerebral cortex: An SMI-32 study. Journal of Neuroscience Research, vol. 102, no. 8, article e25375. https://doi.org/10.1002/jnr.25375 (In English)
Mitchell, D. E., Duffy, K. R. (2014) The case from animal studies for balanced binocular treatment strategies for human amblyopia. Ophthalmic and Physiological Optics, vol. 34, no. 2, pp. 129–145. https://doi.org/10.1111/opo.12122 (In English)
Mitzdorf, U., Singer, W. (1977) Laminar segregation of afferents to lateral geniculate nucleus of the cat: An analysis of current source density. Journal of Neurophysiology, vol. 40, no. 6, pp. 1227–1244. https://doi.org/10.1152/jn.1977.40.6.1227 (In English)
Movshon, J. A., Thompson, I. D., Tolhurst, D. J. (1978) Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex. Journal of Physiology, vol. 283, no. 1, pp. 101–120. https://doi.org/10.1113/jphysiol.1978.sp012490 (In English)
Mullen, R. J., Buck, C. R., Smith, A. M. (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development, vol. 116, no. 1, pp. 201–211. https://doi.org/10.1242/dev.116.1.201 (In English)
Orban, G. A. (1984) Neuronal operations in the visual cortex. Berlin; Heidelberg; New York; Tokyo: Springer-Verlag, 370 p. https://doi.org/10.1007/978-3-642-46469-0 (In English)
Parrey, M. U. R. (2024) From cats to the cortex: Unravelling the hierarchical processing system of vision and brain plasticity. Cureus, vol. 16, no. 9, article e68424. https://doi.org/10.7759/cureus.68424 (In English)
Sanderson, K. J. (1974) Lamination of the dorsal lateral geniculate nucleus in carnivores of the weasel (Mustelidae), raccoon (Procyonidae) and fox (Canidae) families. Journal of Comparative Neurology, vol. 153, no. 3, pp. 238–266. https://doi.org/10.1002/cne.901530303 (In English)
Sherman, S. M. (1985) Development of retinal projections to the cat’s lateral geniculate nucleus. Trends in Neurosciences, vol. 8, pp. 350–355. https://doi.org/10.1016/0166-2236(85)90121-3 (In English)
Sherman, S. M., Guillery, R. W. (2002) The role of the thalamus in the flow of information to the cortex. Philosophical Transactions of the Royal Society B, vol. 357, no. 1428, pp. 1695–1708. https://doi.org/10.1098/rstb.2002.1161 (In English)
Shinmyo, Y., Toda, T., Masuda, K. et al. (2017) Molecular investigations of the structure and development of the brain of carnivores. In: S. Shigeno, Y. Murakami, T. Nomura (eds.). Brain evolution by design. Diversity and commonality in animals. Tokyo: Springer Publ., pp. 311–327. https://doi.org/10.1007/978-4-431-56469-0_13 (In English)
Shotwell, S. L., Shatz, C. J., Luskin, M. B. (1986) Development of glutamic acid decarboxylase immunoreactivity in the cat’s lateral geniculate nucleus. Journal of Neuroscience, vol. 6, no. 5, pp. 1410–1423. https://doi.org/10.1523/JNEUROSCI.06-05-01410.1986 (In English)
Soares, J. G., Botelho, E. P., Gattass, R. (2001) Distribution of calbindin, parvalbumin and calretinin in the lateral geniculate nucleus and superior colliculus in Cebus apella monkeys. Journal of Chemical Neuroanatomy, vol. 22, no. 3, pp. 139–146. https://doi.org/10.1016/s0891-0618(01)00123-5 (In English)
Sretavan, D. W., Shatz, C. J. (1986) Prenatal development of retinal ganglion cell axons: Segregation into eye-specific layers within the cat’s lateral geniculate nucleus. Journal of Neuroscience, vol. 6, no. 1, pp. 234–251. https://doi.org/10.1523/JNEUROSCI.06-01-00234.1986 (In English)
Stichel, C. C., Singer, W., Heizmann, C. W., Norman, A. W. (1987) Immunohistochemical localization of calcium-binding proteins, parvalbumin and calbindin-D 28k, in the adult and developing visual cortex of cats: A light and electron microscopic study. Journal of Comparative Neurology, vol. 262, no. 4, pp. 563–577. https://doi.org/10.1002/cne.902620409 (In English)
Stryker, M. P., Zahs, K. R. (1983) On and off sublaminae in the lateral geniculate nucleus of the ferret. Journal of Neuroscience, vol. 3, no. 10, pp. 1943–1951. https://doi.org/10.1523/JNEUROSCI.03-10-01943.1983 (In English)
Takesian, A. E., Hensch, T. K. (2013) Balancing plasticity/stability across brain development. Progress in Brain Research, vol. 207, pp. 3–34. https://doi.org/10.1016/B978-0-444-63327-9.00001-1 (In English)
Van der Gucht, E., Vandesande, F., Arckens, L. (2001) Neurofilament protein: A selective marker for the architectonic parcellation of the visual cortex in adult cat brain. Journal of Comparative Neurology, vol. 441, no. 4, pp. 345–368. https://doi.org/10.1002/cne.1416 (In English)
Weng, C., Yeh, C.-I., Stoelzel, C. R., Alonso, J.-M. (2005) Receptive field size and response latency are correlated within the cat visual thalamus. Journal of Neurophysiology, vol. 93, no. 6, pp. 3537–3547. https://doi.org/10.1152/jn.00847.2004 (In English)
Westland, K. W., Burke, W. (2002) Patterns of X and Y optic nerve fibre terminations in the dorsal lateral geniculate nucleus of the cat. Documenta Ophthalmologica, vol. 105, no. 2, pp. 129–149. https://doi.org/10.1023/a:1020544802517 (In English)
Weyand, T. G. (2016) The multifunctional lateral geniculate nucleus. Reviews in Neurosciences, vol. 27, no. 2, pp. 135–157. https://doi.org/10.1515/revneuro-2015-0018 (In English)
Yan, Y. H., Winarto, A., Mansjoer, I., Hendrickson, A. (1996) Parvalbumin, calbindin, and calretinin mark distinct pathways during development of monkey dorsal lateral geniculate nucleus. Journal of Neurobiology, vol. 31, no. 2, pp. 189–209. https://doi.org/10.1002/(SICI)1097-4695(199610)31:2<189::AID-NEU5>3.0.CO;2-7 (In English)
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2025 Наталья Сергеевна Меркульева, Александр Александрович Михалкин

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Авторы предоставляют материалы на условиях публичной оферты и лицензии CC BY 4.0. Эта лицензия позволяет неограниченному кругу лиц копировать и распространять материал на любом носителе и в любом формате в любых целях, делать ремиксы, видоизменять, и создавать новое, опираясь на этот материал в любых целях, включая коммерческие.
Данная лицензия сохраняет за автором права на статью, но разрешает другим свободно распространять, использовать и адаптировать работу при обязательном условии указания авторства. Пользователи должны предоставить корректную ссылку на оригинальную публикацию в нашем журнале, указать имена авторов и отметить факт внесения изменений (если таковые были).
Авторские права сохраняются за авторами. Лицензия CC BY 4.0 не передает права третьим лицам, а лишь предоставляет пользователям заранее данное разрешение на использование при соблюдении условия атрибуции. Любое использование будет происходить на условиях этой лицензии. Право на номер журнала как составное произведение принадлежит издателю.





