Postnatal development of layers in the cat’s lateral geniculate nucleus
DOI:
https://doi.org/10.33910/2687-1270-2025-6-2-161-170Keywords:
lateral geniculate nucleus, perigeniculate nucleus, postnatal development, cat, NeuN, SMI-32, calretinin, parvalbuminAbstract
This review synthesizes findings from an investigation into the postnatal development of layers of the dorsal lateral geniculate nucleus (LGNd) and the perigeniculate nucleus (PGN) in the cat, focusing on five key stages: neonatal, precritical, critical (peak and decline), and adulthood. The study employed four neurochemical markers: the common neuronal protein (NeuN), Ca2+-binding protein parvalbumin (a marker of inhibitory interneurons), calretinin (a marker of koniocellular relay neurons in primates), and non-phosphorylated heavy neurofilaments (SMI-32, a marker of magnocellular/Y relay neurons in primates and cats). During the neonatal and precritical periods, several transient neuronal populations were identified that disappear during the critical period: (1) large interlaminar neurons in the LGNd expressing NeuN and parvalbumin; (2) large calretinin-expressing neurons in the Cp layers of the LGNd; (3) PGN neurons expressing calretinin. The study also found transient sublamination of the A-layers of the LGNd, organized by NeuN-immunonegative and NeuN-immunopositive neurons. The concurrent existence of these populations suggests a coupled functional role during the precritical period, which appears to be governed more by intrinsic factors than by visual experience.
References
Berardi, N., Morrone, M. C. (1984) Development of gamma-aminobutyric acid mediated inhibition of X cells of the cat lateral geniculate nucleus. Journal of Physiology, vol. 357, no. 1, pp. 525–537. https://doi.org/10.1113/jphysiol.1984.sp015515 (In English)
Bickford, M. E., Guido, W., Godwin, D. W. (1998) Neurofilament proteins in Y-cells of the cat lateral geniculate nucleus: Normal expression and alteration with visual deprivation. Journal of Neuroscience, vol. 18, no. 16, pp. 6549–6557. https://doi.org/10.1523/JNEUROSCI.18-16-06549.1998 (In English)
Bonds, A. B., Freeman, R. D. (1978) Development of optical quality in the kitten eye. Vision Research, vol. 18, no. 4, pp. 391–398. https://doi.org/10.1016/0042-6989(78)90048-2 (In English)
Bowling, D. B., Wieniawa-Narkiewicz, E. (1986) The distribution of on- and off-centre X- and Y-like cells in the A layers of the cat’s lateral geniculate nucleus. Journal of Physiology, vol. 375, no. 1, pp. 561–572. https://doi.org/10.1113/jphysiol.1986.sp016133 (In English)
Casagrande, V. A. (1994) A third parallel visual pathway to primate area V1. Trends in Neuroscience, vol. 17, no. 7, pp. 305–310. https://doi.org/10.1016/0166-2236(94)90065-5 (In English)
Celio, M. R. (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience, vol. 35, no. 2, pp. 375–475. https://doi.org/10.1016/0306-4522(90)90091-h (In English)
Chalupa, L. M. (2007) A reassessment of the role of activity in the formation of eye-specific retinogeniculate projections. Brain Research Reviews, vol. 55, no. 2, pp. 228–236. https://doi.org/10.1016/j.brainresrev.2007.03.003 (In English)
Chandra, A. J., Lee, S. C. S., Grünert, U. (2017) Thorny ganglion cells in marmoset retina: Morphological and neurochemical characterization with antibodies against calretinin. Journal of Comparative Neurology, vol. 525, no. 18, pp. 3962–3974. https://doi.org/10.1002/cne.24319 (In English)
Crowley, J. C., Katz, L. C. (2002) Ocular dominance development revisited. Current Opinion in Neurobiology, vol. 12, no. 1, pp. 104–109. https://doi.org/10.1016/S0959-4388(02)00297-0 (In English)
Demeulemeester, H., Arckens, L., Vandesande, F. et al. (1991) Calcium binding proteins as molecular markers for cat geniculate neurons. Experimental Brain Research, vol. 83, no. 3, pp. 513–520. https://doi.org/10.1007/BF00229828 (In English)
De Sousa, A. A., Sherwood, C. C., Hof, P. R., Zilles, K. (2013) Lamination of the lateral geniculate nucleus of catarrhine primates. Brain, Behavior and Evolution, vol. 81, no. 2, pp. 93–108. https://doi.org/10.1159/000346495 (In English)
Erişir, A., Van Horn, S. C., Sherman, S. M. (1998) Distribution of synapses in the lateral geniculate nucleus of the cat: Differences between laminae A and A1 and between relay cells and interneurons. Journal of Comparative Neurology, vol. 390, no. 2, pp. 247–255. https://doi.org/10.1002/(SICI)1096-9861(19980112)390:2<247::AID-CNE7>3.0.CO;2-1 (In English)
Fagiolini, M., Fritschy, J.-M., Löw, K. et al. (2004) Specific GABAA circuits for visual cortical plasticity. Science, vol. 303, no. 5664, pp. 1681–1683. https://doi.org/10.1126/science.1091032 (In English)
Ferster, D. (1990) X- and Y-mediated current sources in areas 17 and 18 of cat visual cortex. Visual Neuroscience, vol. 4, no. 2, pp. 135–145. https://doi.org/10.1017/S0952523800002297 (In English)
Fitzgibbon, T. (2002) Organization of reciprocal connections between the perigeniculate nucleus and dorsal lateral geniculate nucleus in the cat: A transneuronal transport study. Visual Neuroscience, vol. 19, no. 4, pp. 511–520. https://doi.org/10.1017/S0952523802194120 (In English)
FitzGibbon, T. (2007) Do first order and higher order regions of the thalamic reticular nucleus have different developmental timetables? Experimental Neurology, vol. 204, no. 1, pp. 339–354. https://doi.org/10.1016/j.expneurol.2006.11.012 (In English)
Gao, W. J., Wormington, A. B., Newman, D. E., Pallas, S. L. (2000) Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: Immunocytochemical localization of calbindin- and parvalbumin-containing neurons. Journal of Comparative Neurology, vol. 422, no. 1, pp. 140–157. https://doi.org/10.1002/(sici)1096-9861(20000619)422:1<140::aid-cne9>3.0.co;2-0 (In English)
Hendry, S. H. C., Reid, R. C. (2000) The koniocellular pathway in primate vision. Annual Review of Neuroscience, vol. 23, no. 1, pp. 127–153. https://doi.org/10.1146/annurev.neuro.23.1.127 (In English)
Hong, S.-K., Kim, J.-Y., Jeon, C.-J. (2002) Immunocytochemical localization of calretinin in the superficial layers of the cat superior colliculus. Neuroscience Research, vol. 44, no. 3, pp. 325–335. https://doi.org/10.1016/S0168-0102(02)00154-2 (In English)
Jeffries, A. M., Killian, N. J., Pezaris, J. S. (2014) Mapping the primate lateral geniculate nucleus: A review of experiments and methods. Journal of Physiology — Paris, vol. 108, no. 1, pp. 3–10. https://doi.org/10.1016/j.jphysparis.2013.10.001 (In English)
Kalil, R. (1978) Development of the dorsal lateral geniculate nucleus in the cat. Journal of Comparative Neurology, vol. 182, no. 2, pp. 265–291. https://doi.org/10.1002/cne.901820206 (In English)
Kato, N., Kawaguchi, S., Miyata, H. (1984) Geniculocortical projection to layer I of area 17 in kittens: Orthograde and retrograde HRP studies. Journal of Comparative Neurology, vol. 225, no. 3, pp. 441–447. https://doi.org/10.1002/cne.902250309 (In English)
Kaufman, D. L., Houser, C. R., Tobin, A. J. (1991) Two forms of the γ-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. Journal of Neurochemistry, vol. 56, no. 2, pp. 720–723. https://doi.org/10.1111/j.1471-4159.1991.tb08211.x (In English)
Kawano, J. (1998) Cortical projections of the parvocellular laminae C of the dorsal lateral geniculate nucleus in the cat: An anterograde wheat germ agglutinin conjugated to horseradish peroxidase study. Journal of Comparative Neurology, vol. 392, no. 4, pp. 439–457. https://doi.org/10.1002/(sici)1096-9861(19980323)392:4<439::aid-cne3>3.0.co;2-1 (In English)
Kutcher, M. R., Duffy, K. R. (2007) Cytoskeleton alteration correlates with gross structural plasticity in the cat lateral geniculate nucleus. Visual Neuroscience, vol. 24, no. 6, pp. 775–785. https://doi.org/10.1017/S095252380707068X (In English)
Lavezzi, A. M., Corna, M. F., Matturri, L. (2013) Neuronal nuclear antigen (NeuN): A useful marker of neuronal immaturity in sudden unexplained perinatal death. Journal of the Neurological Sciences, vol. 329, no. 1–2, pp. 45–50. https://doi.org/10.1016/j.jns.2013.03.012 (In English)
Le Vay, S., McConnell, S. K. (1982) ON and OFF layers in the lateral geniculate nucleus of the mink. Nature, vol. 300, no. 5890, pp. 350–351. https://doi.org/10.1038/300350a0 (In English)
Linden, D. C., Guillery, R. W., Cucchiaro, J. (1981) The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development. Journal of Comparative Neurology, vol. 203, no. 2, pp. 189–211. https://doi.org/10.1002/cne.902030204 (In English)
Martin, P. R., White, A. J. R., Goodchild, A. K. et al. (1997) Evidence that blue-on cells are part of the third geniculocortical pathway in primates. European Journal of Neuroscience, vol. 9, no. 7, pp. 1536–1541. https://doi.org/10.1111/j.1460-9568.1997.tb01509.x (In English)
McConnell, S. K., Ghosh, A., Shatz, C. J. (1989) Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science, vol. 245, no. 4921, pp. 978–982. https://doi.org/10.1126/science.2475909 (In English)
Merkulyeva, N. S. (2019) Provodyashchie kanaly zritel’noj sistemy. Osnovy klassifikatsii [Visual parallel channels. A basis of classification]. Zhurnal vysshej nervnoj deyatel’nosti im. I. P. Pavlova, vol. 69, no. 5, pp. 541–548. https://doi.org/10.1134/S004446771905006X (In Russian)
Merkulyeva, N. S. (2022) Provodyashchie kanaly zritel’noj sistemy. Tretij kanal [Conducting channels in the visual system. The third channel]. Neuroscience and Behavioral Physiology, vol. 52, no. 6, pp. 886–898. https://doi.org/10.1007/s11055-022-01313-4 (In English)
Merkulyeva, N. S., Kostareva, A., Mikhalkin, A. A. (2025) Neurons expressing calretinin in the developing feline dorsal lateral geniculate nucleus. The Anatomical Record. [In Print]. https://doi.org/10.1002/ar.25670 (In English)
Merkulyeva, N. S., Mikhalkin, A. A., Zykin, P. (2018) Early postnatal development of the lamination in the lateral geniculate nucleus A-layers in cats. Cellular and Molecular Neurobiology, vol. 38, no. 5, pp. 1137–1143. https://doi.org/10.1007/s10571-018-0585-6 (In English)
Merkulyeva, N. S., Mikhalkin, А. A., Kostareva, A., Vavilova, T. (2022) Transient neurochemical features of the perigeniculate neurons during early postnatal development of the cat. Journal of Comparative Neurology, vol. 530, no. 18, pp. 3193–3208. https://doi.org/10.1002/cne.25402 (In English)
Mikhalkin, A. A., Merkulyeva, N. S. (2023) Dorzal’noe yadro naruzhnogo kolenchatogo tela: anatomiya, gistologiya, ontogenez [The dorsal nucleus of the lateral geniculate body: Anatomy, histology, ontogenesis]. Neuroscience and Behavioral Physiology, vol. 53, no. 8, pp. 1410–1425. https://doi.org/10.1007/s11055-023-01534-1 (In English)
Mikhalkin, A. A., Nikitina, N. I., Merkulyeva, N. S. (2021) Heterochrony of postnatal accumulation of nonphosphorylated heavy-chain neurofilament by neurons of the cat dorsal lateral geniculate nucleus. Journal of Comparative Neurology, vol. 529, no. 7, pp. 1430–1441. https://doi.org/10.1002/cne.25028 (In English)
Mikhalkin, A. A., Nikitina, N. I., Merkulyeva, N. S. (2024) Early postnatal development of the primary visual areas 17 and 18 of the cat cerebral cortex: An SMI-32 study. Journal of Neuroscience Research, vol. 102, no. 8, article e25375. https://doi.org/10.1002/jnr.25375 (In English)
Mitchell, D. E., Duffy, K. R. (2014) The case from animal studies for balanced binocular treatment strategies for human amblyopia. Ophthalmic and Physiological Optics, vol. 34, no. 2, pp. 129–145. https://doi.org/10.1111/opo.12122 (In English)
Mitzdorf, U., Singer, W. (1977) Laminar segregation of afferents to lateral geniculate nucleus of the cat: An analysis of current source density. Journal of Neurophysiology, vol. 40, no. 6, pp. 1227–1244. https://doi.org/10.1152/jn.1977.40.6.1227 (In English)
Movshon, J. A., Thompson, I. D., Tolhurst, D. J. (1978) Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex. Journal of Physiology, vol. 283, no. 1, pp. 101–120. https://doi.org/10.1113/jphysiol.1978.sp012490 (In English)
Mullen, R. J., Buck, C. R., Smith, A. M. (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development, vol. 116, no. 1, pp. 201–211. https://doi.org/10.1242/dev.116.1.201 (In English)
Orban, G. A. (1984) Neuronal operations in the visual cortex. Berlin; Heidelberg; New York; Tokyo: Springer-Verlag, 370 p. https://doi.org/10.1007/978-3-642-46469-0 (In English)
Parrey, M. U. R. (2024) From cats to the cortex: Unravelling the hierarchical processing system of vision and brain plasticity. Cureus, vol. 16, no. 9, article e68424. https://doi.org/10.7759/cureus.68424 (In English)
Sanderson, K. J. (1974) Lamination of the dorsal lateral geniculate nucleus in carnivores of the weasel (Mustelidae), raccoon (Procyonidae) and fox (Canidae) families. Journal of Comparative Neurology, vol. 153, no. 3, pp. 238–266. https://doi.org/10.1002/cne.901530303 (In English)
Sherman, S. M. (1985) Development of retinal projections to the cat’s lateral geniculate nucleus. Trends in Neurosciences, vol. 8, pp. 350–355. https://doi.org/10.1016/0166-2236(85)90121-3 (In English)
Sherman, S. M., Guillery, R. W. (2002) The role of the thalamus in the flow of information to the cortex. Philosophical Transactions of the Royal Society B, vol. 357, no. 1428, pp. 1695–1708. https://doi.org/10.1098/rstb.2002.1161 (In English)
Shinmyo, Y., Toda, T., Masuda, K. et al. (2017) Molecular investigations of the structure and development of the brain of carnivores. In: S. Shigeno, Y. Murakami, T. Nomura (eds.). Brain evolution by design. Diversity and commonality in animals. Tokyo: Springer Publ., pp. 311–327. https://doi.org/10.1007/978-4-431-56469-0_13 (In English)
Shotwell, S. L., Shatz, C. J., Luskin, M. B. (1986) Development of glutamic acid decarboxylase immunoreactivity in the cat’s lateral geniculate nucleus. Journal of Neuroscience, vol. 6, no. 5, pp. 1410–1423. https://doi.org/10.1523/JNEUROSCI.06-05-01410.1986 (In English)
Soares, J. G., Botelho, E. P., Gattass, R. (2001) Distribution of calbindin, parvalbumin and calretinin in the lateral geniculate nucleus and superior colliculus in Cebus apella monkeys. Journal of Chemical Neuroanatomy, vol. 22, no. 3, pp. 139–146. https://doi.org/10.1016/s0891-0618(01)00123-5 (In English)
Sretavan, D. W., Shatz, C. J. (1986) Prenatal development of retinal ganglion cell axons: Segregation into eye-specific layers within the cat’s lateral geniculate nucleus. Journal of Neuroscience, vol. 6, no. 1, pp. 234–251. https://doi.org/10.1523/JNEUROSCI.06-01-00234.1986 (In English)
Stichel, C. C., Singer, W., Heizmann, C. W., Norman, A. W. (1987) Immunohistochemical localization of calcium-binding proteins, parvalbumin and calbindin-D 28k, in the adult and developing visual cortex of cats: A light and electron microscopic study. Journal of Comparative Neurology, vol. 262, no. 4, pp. 563–577. https://doi.org/10.1002/cne.902620409 (In English)
Stryker, M. P., Zahs, K. R. (1983) On and off sublaminae in the lateral geniculate nucleus of the ferret. Journal of Neuroscience, vol. 3, no. 10, pp. 1943–1951. https://doi.org/10.1523/JNEUROSCI.03-10-01943.1983 (In English)
Takesian, A. E., Hensch, T. K. (2013) Balancing plasticity/stability across brain development. Progress in Brain Research, vol. 207, pp. 3–34. https://doi.org/10.1016/B978-0-444-63327-9.00001-1 (In English)
Van der Gucht, E., Vandesande, F., Arckens, L. (2001) Neurofilament protein: A selective marker for the architectonic parcellation of the visual cortex in adult cat brain. Journal of Comparative Neurology, vol. 441, no. 4, pp. 345–368. https://doi.org/10.1002/cne.1416 (In English)
Weng, C., Yeh, C.-I., Stoelzel, C. R., Alonso, J.-M. (2005) Receptive field size and response latency are correlated within the cat visual thalamus. Journal of Neurophysiology, vol. 93, no. 6, pp. 3537–3547. https://doi.org/10.1152/jn.00847.2004 (In English)
Westland, K. W., Burke, W. (2002) Patterns of X and Y optic nerve fibre terminations in the dorsal lateral geniculate nucleus of the cat. Documenta Ophthalmologica, vol. 105, no. 2, pp. 129–149. https://doi.org/10.1023/a:1020544802517 (In English)
Weyand, T. G. (2016) The multifunctional lateral geniculate nucleus. Reviews in Neurosciences, vol. 27, no. 2, pp. 135–157. https://doi.org/10.1515/revneuro-2015-0018 (In English)
Yan, Y. H., Winarto, A., Mansjoer, I., Hendrickson, A. (1996) Parvalbumin, calbindin, and calretinin mark distinct pathways during development of monkey dorsal lateral geniculate nucleus. Journal of Neurobiology, vol. 31, no. 2, pp. 189–209. https://doi.org/10.1002/(SICI)1097-4695(199610)31:2<189::AID-NEU5>3.0.CO;2-7 (In English)
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Natalia S. Merkulyeva, Aleksandr A. Mikhalkin

This work is licensed under a Creative Commons Attribution 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Creative Commons Attribution 4.0 International (CC BY 4.0).
This license permits an unlimited number of users to copy and redistribute the material in any medium or format, and to remix, transform, and build upon the material for any purpose, including commercial use.
This license retains copyright for the authors but allows others to freely distribute, use, and adapt the work, on the mandatory condition that appropriate credit is given. Users must provide a correct link to the original publication in our journal, cite the authors' names, and indicate if any changes were made.
Copyright remains with the authors. The CC BY 4.0 license does not transfer rights to third parties but rather grants users prior permission for use, provided the attribution condition is met. Any use of the work will be governed by the terms of this license.





