Влияние нарушения синтеза кинуренинов на память у дрозофилы

Авторы

  • Екатерина Александровна Никитина Институт физиологии им. И. П. Павлова РАН; Российский государственный педагогический университет им. А. И. Герцена https://orcid.org/0000-0003-1897-8392
  • Александр Владимирович Журавлев Институт физиологии им. И. П. Павлова РАН https://orcid.org/0000-0003-2673-4283
  • Елена Владимировна Савватеева-Попова Институт физиологии им. И. П. Павлова РАН

DOI:

https://doi.org/10.33910/2687-1270-2021-2-1-49-60

Ключевые слова:

дрозофила, обучение, память, кинурениновый путь обмена триптофана, нейрокинуренины

Аннотация

Проблема продолжительности жизни, особенностей медицинской помощи населению пожилого и старческого возраста становится все актуальнее в большинстве стран мира, в том числе и в России. С увеличением продолжительности жизни нейродегенеративные заболевания (НДЗ) выходят в развитых странах на ведущее место. Одна из причин возникновения нейродегенеративных изменений в мозге — нарушение кинуренинового пути обмена триптофана (КПОТ). Мутанты КПОТ дрозофилы представляют собой адекватные модели для экспериментального изучения роли нейрокинуренинов в изменениях мозговых функций, которые приводят к нарушениям обучения и памяти. Известно несколько мутантных линий D. melanogaster, характеризующихся дефектами кинуренинового пути метаболизма триптофана, в том числе vermilion (v1, блок на уровне фермента триптофаноксигеназы, приводящий к отсутствию кинуренинов и накоплению триптофана). Показано, что мутант v1 сохраняет нормальную способность к обучению при формировании как среднесрочной, так и долгосрочной памяти. Дефектов формирования среднесрочной памяти не обнаружено. Напротив, выявлены нарушения сохранения долгосрочной памяти у данного мутанта. Отсутствие 8-суточной долгосрочной памяти у мутанта v1 с подавлением КПОТ может быть следствием дисбаланса кинуренинов.

Библиографические ссылки

ЛИТЕРАТУРА

Журавлев, А. В., Никитина, Е. А, Савватеева-Попова, Е. В. (2015) Обучение и память у дрозофилы: физиолого- генетические основы. Успехи физиологических наук, т. 46, № 1, с. 76–92.

Журавлев, А. В., Никитина, Е. А., Савватеева-Попова, Е. В. (2020) Роль кинуренинов в регуляции поведения и процессов памяти у дрозофилы. Интегративная физиология, т. 1, № 1, с. 40–50. https://www.doi.org/10.33910/2687-1270-2020-1-1-40-50

Камышев, Н. Г. (1980) Продолжительность жизни и ее связь с двигательной активностью у мутантов дрозофилы метаболического пути триптофан-ксантомматин. Доклады Академии наук СССР, т. 253, № 6, с. 1476–1480.

Лапин, И. П. (2004) Стресс. Тревоги. Депрессия. Алкоголизм. Эпилепсия (Нейрокинурениновые механизмы и новые подходы к лечению). СПб.: ДЕАН, 224 с.

Лопатина, Н. Г., Чеснокова, Е. Г., Смирнов, В. Б. и др. (2004) Кинурениновый путь обмена триптофана и его значение в нейрофизиологии насекомых. Энтомологическое обозрение, т. 83, № 1, с. 3–22.

Смирнов, В. Б., Пономаренко, В. В. (1981) Влияние мутаций, блокирующих кинурениновый путь обмена триптофана, на нейрональную активность у Drosophila melanogaster. Доклады Академии наук СССР, т. 258, № 2, с. 489–491.

Aso, Y., Hattori, D., Yu, Y. et al. (2014) The neuronal architecture of the mushroom body provides a logic for associative learning. eLife, vol. 3, article e04577. https://www.doi.org/10.7554/eLife.04577

Aso, Y., Rubin, G. M. (2016) Dopaminergic neurons write and update memories with cell-type-specific rules. eLife, vol. 5, article e16135. https://www.doi.org/10.7554/eLife.16135

Aso, Y., Sitaraman, D., Ichinose, T. et al. (2014) Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife, vol. 3, article e04580. https://www.doi.org/10.7554/eLife.04580

Badawy, A. A-B. (2017) Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects. International Journal of Tryptophan Research, vol. 10. [Online]. https://www.doi.org/10.1177/1178646917691938

Bailey, C. H., Bartsch, D., Kandel, E. R. (1996) Toward a molecular definition of long-term memory storage. Proceedings of the National Academy of Sciences of USA, vol. 93, no. 24, pp. 13445–13452. https://www.doi.org/10.1073/pnas.93.24.13445

Beal, M. F. (1992) Mechanisms of excitotoxicity in neurologic diseases. FASEB Journal, vol. 6, no. 15, pp. 3338–3344. https://doi.org/10.1096/fasebj.6.15.1464368

Breda, C., Sathyasaikumar, K. V., Sograte Idrissi, S. et al. (2016) Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites. Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 19, pp. 5435–5440. https://www.doi.org/10.1073/pnas.1604453113

Dag, U., Lei, Z., Le, J. Q. et al. (2019) Neuronal reactivation during post-learning sleep consolidates long-term memory in Drosophila. eLife, vol. 8, article e42786. https://www.doi.org/10.7554/eLife.42786

Davis, R. L., Kiger, J. A. Jr. (1981) Dunce mutants of Drosophila melanogaster: Mutants defective in the cyclic AMP phosphodiesterase enzyme system. Journal of Cell Biology, vol. 90, no. 1, pp. 101–107. https://www.doi.org/10.1083/jcb.90.1.101

Ejima, A., Smith, B. P. C., Lucas, C. et al. (2005) Sequential learning of pheromonal cues modulates memory consolidation in trainer-specific associative courtship conditioning. Current Biology, vol. 15, no. 3, pp. 194–206. https://www.doi.org/10.1016/j.cub.2005.01.035

Griffith, L. C., Ejima, A. (2009) Courtship learning in Drosophila melanogaster: Diverse plasticity of a reproductive behavior. Learning & Memory, vol. 16, no. 12, pp. 743–750. https://www.doi.org/10.1101/lm.956309

Heisenberg, M. (2003) Mushroom body memoir: From maps to models. Nature Reviews Neuroscience, vol. 4, no. 4, pp. 266–275. https://www.doi.org/10.1038/nrn1074

Kamyshev, N. G., Iliadi, K. G., Bragina, J. V. (1999) Drosophila conditioned courtship: Two ways of testing memory. Learning & Memory, vol. 6, no. 1, pp. 1–20. PMID: 10355520.

Keleman, K., Krüttner, S., Alenius, M., Dickson, B. J. (2007) Function of the Drosophila CPEB protein Orb2 in long-term courtship memory. Nature Neuroscience, vol. 10, no. 12, pp. 1587–1593. https://www.doi.org/10.1038/nn1996

Keleman, K., Vrontou, E., Krüttner, S. et al. (2012) Dopamine neurons modulate pheromone responses in Drosophila courtship learning. Nature, vol. 489, no. 7414, pp. 145–149. https://www.doi.org/10.1038/nature11345

Lopatina, N. G., Zachepilo, T. G., Chesnokova, E. G., Savvateeva-Popova, Е. V. (2011) Behavioral and molecular consequences of deficiency of endogenous kynurenines in honeybees (Apis mellifera L.). Neuroscience and Behavioral Physiology, vol. 41, no. 6, pp. 626–631. https://www.doi.org/10.1007/s11055-011-9465-y

Mao, Z., Davis, R. L. (2009) Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: Anatomical and physiological heterogeneity. Frontiers in Neural Circuits, vol. 3, article 5. https://www.doi.org/10.3389/neuro.04.005.2009

McBride, S. M. J., Giuliani, G., Choi, C. et al. (1999) Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron, vol. 24, no. 4, pp. 967–977. https://www.doi.org/10.1016/s0896-6273(00)81043-0

Montague, S. A., Baker, B. S. (2016) Memory elicited by courtship conditioning requires mushroom body neuronal subsets similar to those utilized in appetitive memory. PLoS One, vol. 11, no. 10, article e0164516. https://www.doi.org/10.1371/journal.pone.0164516

Nikitina, E. A., Chernikova, D. A., Vasilieva, O. V. et al. (2018) Effect of antioxidants on medium-term memory formation in mutant cardinal of Drosophila melanogaster. Biotechnology, vol. 34, no. 3, pp. 67–77. https://www.doi.org/10.21519/0234-2758-2018-34-3-67-77

Redt-Clouet, C., Trannoy, S., Boulanger, A. et al. (2012) Mushroom body neuronal remodelling is necessary for short-term but not for long-term courtship memory in Drosophila. European Journal of Neuroscience, vol. 35, no. 11, pp. 1684–1691. https://www.doi.org/10.1111/j.1460-9568.2012.08103.x

Savvateeva, E., Popov, A., Kamyshev, N. et al. (2000) Age-dependent memory loss, synaptic pathology and altered brain plasticity in the Drosophila mutant cardinal accumulating 3-hydroxykynurenine. Journal of Neural Transmission, vol. 107, no. 5, pp. 581–601. https://www.doi.org/10.1007/s007020070080

Savvateeva-Popova, Е. V., Nikitina, E. A., Medvedeva, А. V. (2015) Neurogenetics and neuroepigenetics. Russian Journal of Genetics, vol. 51, no. 5, pp. 518–528. https://doi.org/10.1134/S1022795415050075

Savvateeva-Popova, E. V., Popov, A. V., Heinemann, T., Riederer, P. (2003) Drosophila mutants of the kynurenine pathway as a model for ageing studies. In: G. Allegri, C. V. L. Costa, E. Ragazzi et al. (eds.). Developments in tryptophan and serotonin metabolism. Boston: Springer Publ., pp. 713–722. (Advances in Experimental Medicine and Biology. Vol. 527). https://www.doi.org/10.1007/978-1-4615-0135-0_84

Schwarcz, R., Bruno, J. P., Muchowski, P. J., Wu, H.-Q. (2012) Kynurenines in the mammalian brain: When physiology meets pathology. Nature Review Neuroscience, vol. 13, no. 7, pp. 465–477. https://www.doi.org/10.1038/nrn3257

Schwarcz, R., Pelliccari, R. (2002) Manipulation of brain kynurenins: Glial targets, neuronal effects and clinical opportunities. The Journal of Pharmacology and Experimental Therapeutics, vol. 303, no. 1, pp. 1–10. https://www.doi.org/10.1124/jpet.102.034439

Searless, L. L., Ruth, R. S., Pret, A. M. et al. (1990) Structure and transcription of the Drosophila melanogaster vermilion gene and several mutant alleles. Molecular and Cellular Biology, vol. 10, no. 4, pp. 1423–1431. https://www.doi.org/10.1128/mcb.10.4.1423

Siegel, R. W., Hall, J. C. (1979) Conditioned responses in courtship behavior of normal and mutant Drosophila. Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 7, pp. 3430–3434. https://www.doi.org/10.1073/pnas.76.7.3430

Sokal, R. R., Rohlf, J. F. (1995) Biometry: The principles and practice of statistics in biological research. 3rd ed. New York: W. H. Freeman and Co. Publ., 887 р.

Wonodi, I., Schwarcz, R. (2010) Cortical kynurenine pathway metabolism: A novel target for cognitive enhancement in schizophrenia. Schizophrenia Bulletin, vol. 36, no. 2, pp. 211–218. https://www.doi.org/10.1093/schbul/sbq002

Wu, C.-L., Xia, S., Fu, T.-F. et al. (2007) Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nature Neuroscience, vol. 10, no. 12, pp. 1578–1586. https://www.doi.org/10.1038/ nn2005

Zawistowski, S. (1988) A replication demonstrating reduced courtship of Drosophila melanogaster by associative learning. Journal of Comparative Psychology, vol. 102, no. 2, pp. 174–176. https://www.doi.org/10.1037/0735-7036.102.2.174

Zhao, X., Lenek, D., Dag, U. et al. (2018) Persistent activity in a recurrent circuit underlies courtship memory in Drosophila. eLife, vol. 7, article e31425. https://www.doi.org/10.7554/eLife.31425

Zhuravlev, A. V., Vetrovoy, O. V., Ivanova, P. N., Savvateeva-Popova, E. V. (2020) 3-hydroxykynurenine in regulation of Drosophila behavior: The novel mechanisms for cardinal phenotype manifestations. Frontiers in Physiology, vol. 11, article 971. https://www.doi.org/10.3389/fphys.2020.00971

REFERENCES

Aso, Y., Hattori, D., Yu, Y. et al. (2014) The neuronal architecture of the mushroom body provides a logic for associative learning. eLife, vol. 3, article e04577. https://www.doi.org/10.7554/eLife.04577 (In English)

Aso, Y., Rubin, G. M. (2016) Dopaminergic neurons write and update memories with cell-type-specific rules. eLife, vol. 5, article e16135. https://www.doi.org/10.7554/eLife.16135 (In English)

Aso, Y., Sitaraman, D., Ichinose, T. et al. (2014) Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife, vol. 3, article e04580. https://www.doi.org/10.7554/eLife.04580 (In English)

Badawy, A. A-B. (2017) Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects. International Journal of Tryptophan Research, vol. 10. [Online]. https://www.doi.org/10.1177/1178646917691938 (In English)

Bailey, C. H., Bartsch, D., Kandel, E. R. (1996) Toward a molecular definition of long-term memory storage. Proceedings of the National Academy of Sciences of USA, vol. 93, no. 24, pp. 13445–13452. https://www.doi.org/10.1073/pnas.93.24.13445 (In English)

Beal, M. F. (1992) Mechanisms of excitotoxicity in neurologic diseases. FASEB Journal, vol. 6, no. 15, pp. 3338–3344. https://doi.org/10.1096/fasebj.6.15.1464368 (In English)

Breda, C., Sathyasaikumar, K. V., Sograte Idrissi, S. et al. (2016) Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites. Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 19, pp. 5435–5440. https://www.doi.org/10.1073/pnas.1604453113 (In English)

Dag, U., Lei, Z., Le, J. Q. et al. (2019) Neuronal reactivation during post-learning sleep consolidates long-term memory in Drosophila. eLife, vol. 8, article e42786. https://www.doi.org/10.7554/eLife.42786 (In English)

Davis, R. L., Kiger, J. A. Jr. (1981) Dunce mutants of Drosophila melanogaster: Mutants defective in the cyclic AMP phosphodiesterase enzyme system. Journal of Cell Biology, vol. 90, no. 1, pp. 101–107. https://www.doi.org/10.1083/jcb.90.1.101 (In English)

Ejima, A., Smith, B. P. C., Lucas, C. et al. (2005) Sequential learning of pheromonal cues modulates memory consolidation in trainer-specific associative courtship conditioning. Current Biology, vol. 15, no. 3, pp. 194–206. https://www.doi.org/10.1016/j.cub.2005.01.035 (In English)

Griffith, L. C., Ejima, A. (2009) Courtship learning in Drosophila melanogaster: Diverse plasticity of a reproductive behavior. Learning & Memory, vol. 16, no. 12, pp. 743–750. https://www.doi.org/10.1101/lm.956309 (In English)

Heisenberg, M. (2003) Mushroom body memoir: From maps to models. Nature Reviews Neuroscience, vol. 4, no. 4, pp. 266–275. https://www.doi.org/10.1038/nrn1074 (In English)

Kamyshev, N. G. (1980) Prodolzhitelnost’ zhizni i ee svyaz’ s dvigatelnoj aktivnost’yu u mutantov drozofily metabolicheskogo puti triptofan-ksantommatin [Lifespan and its association with locomotor activity in tryptophan-xanthommatin metabolic pathway Drosophila mutants]. Doklady akademii nauk SSSR, vol. 253, no. 6, pp. 1476–1480. (In Russian)

Kamyshev, N. G., Iliadi, K. G., Bragina, J. V. (1999) Drosophila conditioned courtship: Two ways of testing memory. Learning & Memory, vol. 6, no. 1, pp. 1–20. PMID: 10355520. (In English)

Keleman, K., Krüttner, S., Alenius, M., Dickson, B. J. (2007) Function of the Drosophila CPEB protein Orb2 in long-term courtship memory. Nature Neuroscience, vol. 10, no. 12, pp. 1587–1593. https://www.doi.org/10.1038/nn1996 (In English)

Keleman, K., Vrontou, E., Krüttner, S. et al. (2012) Dopamine neurons modulate pheromone responses in Drosophila courtship learning. Nature, vol. 489, no. 7414, pp. 145–149. https://www.doi.org/10.1038/nature11345 (In English)

Lapin, I. P. (2004) Stress. Trevogi. Depressiya. Alkogolizm. Epilepsiya (Nejrokinureninovye mekhanizmy i novye podkhody k lecheniyu) [Stress. Anxiety. Depression. Alcoholism. Epilepsy (Neurokynurenine mechanisms and new treatment approaches)]. Saint Petersburg: Dean Publ., 224 p. (In Russian)

Lopatina, N. G., Chesnokova, E. G., Smirnov, V. B. et al. (2004) Kinureninovyj put’ obmena triptofana i ego znachenie v nejrofiziologii nasekomykh [Kynurenine pathway of tryptophan metabolism and its significance in neurophysiology of insects]. Entomologicheskoe obozrenie — Entomological Review, vol. 83, no. 1, pp. 3–22. (In Russian)

Lopatina, N. G., Zachepilo, T. G., Chesnokova, E. G., Savvateeva-Popova, Е. V. (2011) Behavioral and molecular consequences of deficiency of endogenous kynurenines in honeybees (Apis mellifera L.). Neuroscience and Behavioral Physiology, vol. 41, no. 6, pp. 626–631. https://www.doi.org/10.1007/s11055-011-9465-y (In English)

Mao, Z., Davis, R. L. (2009) Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: Anatomical and physiological heterogeneity. Frontiers in Neural Circuits, vol. 3, article 5. https://www.doi.org/10.3389/neuro.04.005.2009 (In English)

McBride, S. M. J., Giuliani, G., Choi, C. et al. (1999) Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron, vol. 24, no. 4, pp. 967–977. https://www.doi.org/10.1016/s0896-6273(00)81043-0 (In English)

Montague, S. A., Baker, B. S. (2016) Memory elicited by courtship conditioning requires mushroom body neuronal subsets similar to those utilized in appetitive memory. PLoS One, vol. 11, no. 10, article e0164516. https://www.doi.org/10.1371/journal.pone.0164516 (In English)

Nikitina, E. A., Chernikova, D. A., Vasilieva, O. V. et al. (2018) Effect of antioxidants on medium-term memory formation in mutant cardinal of Drosophila melanogaster. Biotechnology, vol. 34, no. 3, pp. 67–77. https://www. doi.org/10.21519/0234-2758-2018-34-3-67-77 (In English)

Redt-Clouet, C., Trannoy, S., Boulanger, A. et al. (2012) Mushroom body neuronal remodelling is necessary for short-term but not for long-term courtship memory in Drosophila. European Journal of Neuroscience, vol. 35, no. 11, pp. 1684–1691. https://www.doi.org/10.1111/j.1460-9568.2012.08103.x (In English)

Savvateeva, E., Popov, A., Kamyshev, N. et al. (2000) Age-dependent memory loss, synaptic pathology and altered brain plasticity in the Drosophila mutant cardinal accumulating 3-hydroxykynurenine. Journal of Neural Transmission, vol. 107, no. 5, pp. 581–601. https://www.doi.org/10.1007/s007020070080 (In English)

Savvateeva-Popova, Е. V., Nikitina, E. A., Medvedeva, А. V. (2015) Neurogenetics and neuroepigenetics. Russian Journal of Genetics, vol. 51, no. 5, pp. 518–528. https://doi.org/10.1134/S1022795415050075 (In English)

Savvateeva-Popova, E. V., Popov, A. V., Heinemann, T., Riederer, P. (2003) Drosophila mutants of the kynurenine pathway as a model for ageing studies. In: G. Allegri, C. V. L. Costa, E. Ragazzi et al. (eds.). Developments in tryptophan and serotonin metabolism. Boston: Springer Publ., pp. 713–722. (Advances in Experimental Medicine and Biology. Vol. 527). https://www.doi.org/10.1007/978-1-4615-0135-0_84 (In English)

Schwarcz, R., Bruno, J. P., Muchowski, P. J., Wu, H.-Q. (2012) Kynurenines in the mammalian brain: When physiology meets pathology. Nature Review Neuroscience, vol. 13, no. 7, pp. 465–477. https://www.doi.org/10.1038/nrn3257 (In English)

Schwarcz, R., Pelliccari, R. (2002) Manipulation of brain kynurenins: Glial targets, neuronal effects and clinical opportunities. The Journal of Pharmacology and Experimental Therapeutics, vol. 303, no. 1, pp. 1–10. https://www.doi.org/10.1124/jpet.102.034439 (In English)

Searless, L. L., Ruth, R. S., Pret, A. M. et al. (1990) Structure and transcription of the Drosophila melanogaster vermilion gene and several mutant alleles. Molecular and Cellular Biology, vol. 10, no. 4, pp. 1423–1431. https://www.doi.org/10.1128/mcb.10.4.1423 (In English)

Siegel, R. W., Hall, J. C. (1979) Conditioned responses in courtship behavior of normal and mutant Drosophila. Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 7, pp. 3430–3434. https://www.doi.org/10.1073/pnas.76.7.3430 (In English)

Smirnov, V. B., Ponomarenko, V. V. (1981) Vliyanie mutatsij, blokiruyushchikh kinureninovyj put’ obmena triptofana, na nejronal’nuyu aktivnost’ u Drosophila melanogaster [Effect of mutations blocking the kynurenine tryptophan metabolism pathway on neuronal activity in Drosophila melanogaster]. Doklady Akademii nauk SSSR, vol. 258, no. 2, pp. 489–491. (In Russian)

Sokal, R. R., Rohlf, J. F. (1995) Biometry: The principles and practice of statistics in biological research. 3rd ed. New York: W. H. Freeman and Co. Publ., 887 р. (In English)

Wonodi, I., Schwarcz, R. (2010) Cortical kynurenine pathway metabolism: A novel target for cognitive enhancement in schizophrenia. Schizophrenia Bulletin, vol. 36, no. 2, pp. 211–218. https://www.doi.org/10.1093/schbul/sbq002 (In English)

Wu, C.-L., Xia, S., Fu, T.-F. et al. (2007) Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nature Neuroscience, vol. 10, no. 12, pp. 1578–1586. https://www.doi.org/10.1038/ nn2005 (In English)

Zawistowski, S. (1988) A replication demonstrating reduced courtship of Drosophila melanogaster by associative learning. Journal of Comparative Psychology, vol. 102, no. 2, pp. 174–176. https://www.doi.org/10.1037/0735-7036.102.2.174 (In English)

Zhao, X., Lenek, D., Dag, U. et al. (2018) Persistent activity in a recurrent circuit underlies courtship memory in Drosophila. eLife, vol. 7, article e31425. https://www.doi.org/10.7554/eLife.31425 (In English)

Zhuravlev, A. V., Nikitina, E. A., Savvateeva-Popova, E. V. (2015) Obuchenie i pamyat’ u drozofily: fiziologo-geneticheskie osnovy [Learning and memory in Drosophila: Physiologic and genetic bases]. Uspekhi fiziologicheskikh nauk, vol. 46, no. 1, pp. 76–92. (In Russian)

Zhuravlev, A. V., Nikitina, E. A., Savvateeva-Popova, E. V. (2020) Rol’ kinureninov v regulyatsii povedeniya i protsessov pamyati u drozofily [Role of kynurenines in regulation of behavior and memory processes in Drosophila]. Integrativnaya fiziologiya — Integrative Physiology, vol. 1, no. 1, pp. 40–50. https://www.doi.org/10.33910/2687-1270-2020-1-1-40-50 (In Russian)

Zhuravlev, A. V., Vetrovoy, O. V., Ivanova, P. N., Savvateeva-Popova, E. V. (2020) 3-hydroxykynurenine in regulation of Drosophila behavior: The novel mechanisms for cardinal phenotype manifestations. Frontiers in Physiology, vol. 11, article 971. https://www.doi.org/10.3389/fphys.2020.00971 (In English)

Опубликован

2021-05-27

Выпуск

Раздел

Экспериментальные статьи