Влияние кодируемых L-аминокислот на органотипическую культуру тканей различного генеза

Авторы

  • Наталья Иосифовна Чалисова Институт физиологии им. И. П. Павлова РАН https://orcid.org/0000-0002-2371-0043
  • Екатерина Александровна Никитина Институт физиологии им. И. П. Павлова РАН; Российский государственный педагогический университет им. А. И. Герцена https://orcid.org/0000-0003-1897-8392
  • Марина Леонидовна Александрова Научно-клинический центр токсикологии им. С. Н. Голикова ФМБА России https://orcid.org/0000-0001-9118-7947
  • Екатерина Андреевна Золотоверхая Научно-клинический центр токсикологии им. С. Н. Голикова ФМБА России https://orcid.org/0000-0002-9708-2596

DOI:

https://doi.org/10.33910/2687-1270-2021-2-2-196-204

Ключевые слова:

пролиферация, аминокислоты, органотипическая культура тканей, кора головного мозга, селезенка

Аннотация

Исследование механизмов регуляции в многоклеточных системах двух основных клеточных процессов — пролиферации и апоптоза — является актуальной задачей современной биологии и медицины. В последние десятилетия были накоплены данные о том, что кодируемые L-аминокислоты, являясь пластическим материалом при создании белковых молекул, в то же время сами могут регулировать клеточные процессы, усиливая или ослабляя пролиферацию и апоптоз. Эти сбалансированные процессы важны для развития живых организмов. Одним из важных свойств кодируемых аминокислот является их гидрофобность, зависящая от сочетания в аминокислотах протон-донорных и протон-акцепторных групп, что обеспечивает их участие в водородных связях с другими молекулами, в частности с молекулами растворителя. В связи с этим целью исследования было выявление действия аминокислот, которые обладали различной степенью гидрофобности, на пролиферацию в органотипической культуре тканей коры головного мозга и селезенки крыс. Установлено, что в ткани эктодермального генеза пролиферацию стимулировали в основном гидрофобные аминокислоты, в то время как эти же аминокислоты угнетали пролиферацию в мезодермальной ткани селезенки. Выявление тканеспецифического действия L-аминокислот создает базу для целенаправленного синтеза коротких пептидов при разработке новых лекарственных препаратов, предназначенных для усиления регенеративных процессов при патологии нервной и иммунной тканей.

Библиографические ссылки

ЛИТЕРАТУРА

Батоцыренова, Е. Г., Гавриленкова, Л. П., Гадон, В. Л. и др. (2018) Средство для коррекции десинхроноза, вызванного нарушением светового режима. Патент на изобретение RU 2660578. Дата регистрации 06.07.2018. Выдано Роспатентом.

Концевая, Е. А., Линькова, Н. С., Чалисова, Н. И. и др. (2012) Влияние аминокислот на экспрессию сигнальных молекул в органотипической культуре селезенки. Клеточные технологии в биологии и медицине, № 2, с. 102–105.

Мамон, Л. А., Бондаренко, Л. В., Третьякова, И. В. и др. (1999) Последствия клеточного стресса при нарушенном синтезе белков теплового шока у дрозофилы. Вестник Санкт-Петербургского университета. Серия 3. Биология, т. 4, № 24, с. 94–107.

Хавинсон, В. Х., Кузник, Б. И., Рыжак, Г. А. (2014) Пептидные геропротекторы — эпигенетические регуляторы физиологических функций организма. СПб.: Изд-во РГПУ им. А. И Герцена, 271 с.

Хавинсон, В. Х., Чалисова, Н. И., Линькова, Н. С. и др. (2015) Зависимость тканеспецифического действия пептидов от их количественного аминокислотного состава. Фундаментальные исследования, № 2-3, с. 497–503.

Чалисова, Н. И., Быков, Н. М., Зезюлин, П. Н. (2003) Реципрокные соотношения пролиферативной активности в центральной и периферической зонах органотипической культуры селезенки при действии вилона у крыс разного возраста. Успехи геронтологии, т. 11, с. 104–108.

Шатаева, Л. К., Хавинсон, В. Х., Ряднова, И. Ю. (2003) Пептидная саморегуляция живых систем (факты и гипотезы). СПб.: Наука, 211 с.

Швецов, А. В., Дюжикова, Н. А., Савенко, Ю. Н. и др. (2015) Влияние экспериментальной комы на экспрессию белка bcl-2 и каспаз-3,9 в мозге крыс. Бюллетень экспериментальной биологии и медицины, т. 160, № 8, с. 178–181.

Aftabuddin, Md., Kundu, S. (2007) Hydrophobic, hydrophilic, and charged amino acid networks within protein. Biophysical Journal, vol. 93, no. 1, pp. 225–231. https://www.doi.org/10.1529/biophysj.106.098004

Ashapkin, V., Khavinson, V., Shilovsky, G. et al. (2020) Gene expression in human mesenchymal stem cell aging cultures: Modulation by short peptides. Molecular Biology Reports, vol. 47, no. 6, pp. 4323–4329. https://www.doi.org/10.1007/s11033-020-05506-3

Bonfili, L., Cecarini, V., Cuccioloni, M. et al. (2017) Essential amino acid mixtures drive cancer cells to apoptosis through proteasome inhibition and autophagy activation. Federation of European Biochemical Societies Journal, vol. 284, no. 11, pp. 1726–1737. https://www.doi.org/10.1111/febs.14081

Caputi, S., Trubiani, O., Sinjari, B. (2019) Effect of short peptides on neuronal differentiation of stem cells. International Journal of Immunopathology and Pharmacology, vol. 33, pp. 1–12. https://www.doi.org/10.1177/2058738419828613

Chalisova, N. I., Ivanova, P. N., Zalomaeva, E. S. et al. (2019) Effect of tryptophan and kynurenine on cell proliferation in tissue culture of the cerebral cortex in young and old rats. Advances in Gerontology, vol. 9, no. 2, pp. 186–189. https://www.doi.org/10.1134/S2079057019020073

Chalisova, N. I., Lin’kova, N. S., Nichik, T. E. et al. (2015) Peptide regulation of cells renewal processes in kidney tissue cultures from young and old animals. Bulletin of Experimental Biology and Medicine, vol. 159, pp. 124–127. https://doi.org/10.1007/s10517-015-2906-9 (In English)

Cruzat, V., Macedo Rogero, M., Noel Keane, K. et al. (2018) Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients, vol. 10, no. 11, article 1564. https://www.doi.org/10.3390/ nu10111564

Ducker, G. S., Rabinowitz, J. D. (2017) One-carbon metabolism in health and disease. Cell Metabolism, vol. 25, no. 1, pp. 27–42. https://www.doi.org/10.1016/j.cmet.2016.08.009

Hawkins, R. A. (2009) The blood-brain barrier and glutamate. American Journal of Clinical Nutrition, vol. 90, no. 3, pp. 867S–874S. https://www.doi.org/10.3945/ajcn.2009.27462BB

Ivanova, P. N., Surma, S. V., Shchegolev, B. F. et al. (2018) The effects of weak static magnetic field on the development of organotypic tissue culture in rats. Doklady Biological Sciences, vol. 481, no. 4, pp. 132–134. https://www.doi.org/10.1134/S0012496618040075

Kimball, S. R., Jefferson, L. S. (2006) New functions for amino acids: Effects on gene transcription and translation. American Journal of Clinical Nutrition, vol. 83, no. 2, pp. 500S–507S. https://www.doi.org/10.1093/ajcn/83.2.500S

Khavinson, V., Linkova, N., Diatlova, A., Trofimova, S. (2020a) Peptide regulation of cell differentiation. Stem Cell Reviews and Reports, vol. 16, no. 1, pp. 118–125. https://www.doi.org/10.1007/s12015-019-09938-8

Khavinson, V., Linkova, N., Dyatlova, A. et al. (2020b) Peptides: Prospects for use in the treatment of COVID-19. Molecules, vol. 25, no. 19, article 4389. https://www.doi.org/10.3390/molecules25194389

Khavinson, V., Lin’kova, N., Kozhevnikova, E., Trofimova, S. (2021) EDR peptide: Possible mechanism of gene expression and protein synthesis regulation involved in the pathogenesis of Alzheimer’s Disease. Molecules, vol. 26, no. 1, article 159. https://www.doi.org/10.3390/molecules26010159

Krall, A. S., Xu, S., Graeber, T. G. et al. (2016) Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nature Communications, vol. 7, article 11457. https://www.doi.org/10.1038/ncomms11457

Nikitina, E. A., Chernikova, D. A., Vasilyeva, O. V. et al. (2018a) Effect of antioxidants on medium-term memory formation in mutant cardinal of Drosophila melanogaster. Biotechnology, vol. 34, no. 3, pp. 67–77. https://www.doi.org/10.21519/0234-2758-2018-34-3-67-77

Nikitina, E. A., Medvedeva, A. V., Gerasimenko, M. S. et al. (2018b) Weakened geomagnetic field: Effects on genomic transcriptional activity, learning, and memory in Drosophila melanogaster. Neuroscience and Behavioral Physiology, vol. 48, no. 7, pp. 796–803. https://www.doi.org/10.1007/s11055-018-0632-2

Phang, J. M., Liu, W., Hancock, C. N. et al. (2015) Proline metabolism and cancer: Emerging links to glutamine and collagen. Current Opinion in Clinical Nutrition and Metabolic Care, vol. 18, no. 1, pp. 71–77. https://www.doi.org/10.1097/MCO.0000000000000121

Zalomaeva, E. S., Ivanova, P. N., Chalisova, N. I. et al. (2020) Effects of weak static magnetic field and oligopeptides on cell proliferation and cognitive functions in different animal species. Technical Physics, vol. 65, no. 10, pp. 1585–1590. https://www.doi.org/10.1134/S1063784220100254

REFERENCES

Aftabuddin, Md., Kundu, S. (2007) Hydrophobic, hydrophilic, and charged amino acid networks within protein. Biophysical Journal, vol. 93, no. 1, pp. 225–231. https://www.doi.org/10.1529/biophysj.106.098004 (In English)

Ashapkin, V., Khavinson, V., Shilovsky, G. et al. (2020) Gene expression in human mesenchymal stem cell aging cultures: Modulation by short peptides. Molecular Biology Reports, vol. 47, no. 6, pp. 4323–4329. https://www.doi.org/10.1007/s11033-020-05506-3 (In English)

Batotsyrenova, Е. G., Gavrilenkova, L. P., Gadon, V. L. et al. (2018) Sredstvo dlya korrektsii desinkhronoza, vyzvannogo narusheniem svetovogo rezhima [Remedy for correcting desynchronosis caused by changing the light regime]. Patent for invention RU 2660578. Register date 06.07.2018. Granted by Rospatent. (In Russian)

Bonfili, L., Cecarini, V., Cuccioloni, M. et al. (2017) Essential amino acid mixtures drive cancer cells to apoptosis through proteasome inhibition and autophagy activation. Federation of European Biochemical Societies Journal, vol. 284, no. 11, pp. 1726–1737. https://www.doi.org/10.1111/febs.14081 (In English)

Caputi, S., Trubiani, O., Sinjari, B. (2019) Effect of short peptides on neuronal differentiation of stem cells. International Journal of Immunopathology and Pharmacology, vol. 33, pp. 1–12. https://www.doi.org/10.1177/2058738419828613 (In English)

Chalisova, N. I., Bikov, N. M., Zezjulin, P. N. (2003) Retsiproknye sootnosheniya proliferativnoj aktivnosti v tsentralnoj i perifericheskoj zonakh organotipicheskoj kultury selezenki pri dejstvii vilona u krys rasnogo vosrasta [Vilon effect on reciprocal relations of proliferative activity in central and peripheral fields in the spleen organotypic culture of rats of various age]. Uspekhi gerontologii — Advances in Gerontology, vol. 11, pp. 104–108. (In Russian)

Chalisova, N. I., Ivanova, P. N., Zalomaeva, E. S. et al. (2019) Effect of tryptophan and kynurenine on cell proliferation in tissue culture of the cerebral cortex in young and old rats. Advances in Gerontology, vol. 9, no. 2, pp. 186–189. https://www.doi.org/10.1134/S2079057019020073 (In English)

Chalisova, N. I., Lin’kova, N. S., Nichik, T. E. et al. (2015) Peptide regulation of cells renewal processes in kidney tissue cultures from young and old animals. Bulletin of Experimental Biology and Medicine, vol. 159, pp. 124–127. https://doi.org/10.1007/s10517-015-2906-9 (In English)

Cruzat, V., Macedo Rogero, M., Noel Keane, K. et al. (2018) Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients, vol. 10, no. 11, article 1564. https://www.doi.org/10.3390/nu10111564 (In English)

Ducker, G. S., Rabinowitz, J. D. (2017) One-carbon metabolism in health and disease. Cell Metabolism, vol. 25, no. 1, pp. 27–42. https://www.doi.org/10.1016/j.cmet.2016.08.009 (In English)

Hawkins, R. A. (2009) The blood-brain barrier and glutamate. American Journal of Clinical Nutrition, vol. 90, no. 3, pp. 867S–874S. https://www.doi.org/10.3945/ajcn.2009.27462BB (In English)

Ivanova, P. N., Surma, S. V., Shchegolev, B. F. et al. (2018) The effects of weak static magnetic field on the development of organotypic tissue culture in rats. Doklady Biological Sciences, vol. 481, no. 4, pp. 132–134. https://www.doi.org/10.1134/S0012496618040075 (In English)

Kimball, S. R., Jefferson, L. S. (2006) New functions for amino acids: Effects on gene transcription and translation. American Journal of Clinical Nutrition, vol. 83, no. 2, pp. 500S–507S. https://www.doi.org/10.1093/ajcn/83.2.500S (In English)

Khavinson, V. K., Chalisova, N. I., Linkova, N. S. et al. (2015) Zavisimost’ tkanespetsificheskogo dejstviya peptidov ot ikh kolichestvennogo aminokislotnogo sostava [The dependence of tissue-specific peptides activity on the number of amino acids in the peptides]. Fundamental’nye issledovaniya — Fundamental Research, no. 2–3, pp. 497–503. (In Russian)

Khavinson, V. K., Kuznik, B. I., Ryzhak, G. A. (2014) Peptidnye geroprotektory — epigeneticheskie regulyatory fiziologicheskikh funktsij organizma [Peptide geroprotectors are epigenetic regulators of the physiological functions of the body]. Saint Petersburg: Herzen State Pedagogical University Publ., 271 p. (In Russian)

Khavinson, V., Linkova, N., Diatlova, A., Trofimova, S. (2020a) Peptide regulation of cell differentiation. Stem Cell Reviews and Reports, vol. 16, no. 1, pp. 118–125. https://www.doi.org/10.1007/s12015-019-09938-8 (In English)

Khavinson, V., Linkova, N., Dyatlova, A. et al. (2020b) Peptides: Prospects for use in the treatment of COVID-19. Molecules, vol. 25, no. 19, article 4389. https://www.doi.org/10.3390/molecules25194389 (In English)

Khavinson, V., Lin’kova, N., Kozhevnikova, E., Trofimova, S. (2021) EDR peptide: Possible mechanism of gene expression and protein synthesis regulation involved in the pathogenesis of Alzheimer’s Disease. Molecules, vol. 26, no. 1, article 159. https://www.doi.org/10.3390/molecules26010159 (In English)

Kontsevaya, E. A., Lin’kova, N. S., Chalisova, N. I. et al. (2012) Vliyaniye aminokislot na ekspressiyu signal’nykh molekul v organotipicheskoj kul’ture selezenki [Effect of amino acids on the expression of signaling molecules in organotypic culture of the spleen]. Kletochnyye tekhnologii v biologii i meditsine — Cell Technologies in Biology and Medicine, no. 2, pp. 102–105. (In Russian)

Krall, A. S., Xu, S., Graeber, T. G. et al. (2016) Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nature Communications, vol. 7, article 11457. https://www.doi.org/10.1038/ncomms11457 (In English)

Mamon, L. A., Bondarenko, L. V., Tretyakova, I. V. et al. (1999) Posledstviya kletochnogo stressa pri narushennom sinteze belkov teplovogo shoka u drozofily [Consequences of cell stress in conditions of disturbed synthesis of heat shock proteins in Drosophila melanogaster]. Vestnik Sankt-Peterburgskogo universiteta. Seriya 3. Biologiya — Vestnik of Saint Petersburg University. Series 3. Biology, vol. 4, no. 24, pp. 94–107. (In Russian)

Nikitina, E. A., Chernikova, D. A., Vasilyeva, O. V. et al. (2018a) Effect of antioxidants on medium-term memory formation in mutant cardinal of Drosophila melanogaster. Biotechnology, vol. 34, no. 3, pp. 67–77. https://www.doi.org/10.21519/0234-2758-2018-34-3-67-77 (In English)

Nikitina, E. A., Medvedeva, A. V., Gerasimenko, M. S. et al. (2018b) Weakened geomagnetic field: Effects on genomic transcriptional activity, learning, and memory in Drosophila melanogaster. Neuroscience and Behavioral Physiology, vol. 48, no. 7, pp. 796–803. https://www.doi.org/10.1007/s11055-018-0632-2 (In English)

Phang, J. M., Liu, W., Hancock, C. N. et al. (2015) Proline metabolism and cancer: Emerging links to glutamine and collagen. Current Opinion in Clinical Nutrition and Metabolic Care, vol. 18, no. 1, pp. 71–77. https://www.doi.org/10.1097/MCO.0000000000000121 (In English)

Shatayeva, L. K., Khavinson, V. K., Ryadnova, I. Yu. (2003) Peptidnaya samoregulyatsiya zhivykh sistem (fakty i gipotezy) [Peptide self-regulation of living systems (facts and hypotheses)]. Saint Petersburg: Nauka Publ., 211 p. (In Russian)

Shvetsov, A. V., Dyuzhikova, N. A., Savenko Yu. N. et al. (2015) Vliyaniye eksperimental’noj komy na ekspressiyu belka bcl-2 i kaspas-3,9 v mozge krys [The effect of experimental coma on the expression of the bcl-2 protein and caspase-3.9 in the rat brain]. Byulleten’ eksperimental’noj biologii i meditsiny — Bulletin of Experimental Biology and Medicine, vol. 160, no. 8, pp. 178–181. (In Russian)

Zalomaeva, E. S., Ivanova, P. N., Chalisova, N. I. et al. (2020) Effects of weak static magnetic field and oligopeptides on cell proliferation and cognitive functions in different animal species. Technical Physics, vol. 65, no. 10, pp. 1585–1590. https://www.doi.org/10.1134/S1063784220100254 (In English)

Опубликован

2021-06-28

Выпуск

Раздел

Экспериментальные статьи