The impact of hypoxia on Drosophila chromosomal apparatus in 3-hydroxykynurenine accumulation

Authors

DOI:

https://doi.org/10.33910/2687-1270-2022-3-1-80-88

Keywords:

Drosophila, hypoxia, double-stranded breaks, 3-hydroxykynurenine, oxidative stress

Abstract

M. E. Lobashev and V. B. Savvateev’s research laid the foundation for studying the relationship between neuroplasticity and reaction to extreme conditions. Common mechanisms underlying adaptive reactions and learning have been proven to exist. Hypoxia is one of the most common damaging factors in various adverse external and internal effects. Severe forms of hypoxia suppress neuroplasticity and cause learning and memory disorders. Chromatin remodelling and expression of genes involved in memory formation and learning may require double-stranded DNA breaks because they accompany intense matrix processes in neurogenesis and serve as indicators of physiological neuronal activity. Stimulation of regulatory cascades involved in learning has an impact on adaptive response formation. For instance, metabolites of the kynurenine pathway of tryptophan metabolism affect the synaptic plasticity processes that regulate memory formation and learning. This article studies the effect of hypoxia on the state of chromosomal apparatus in Drosophila cd mutant (accumulation of 3-hydroxykynurenine). We discover interlinear differences in the frequency of double-stranded DNA breaks following exposure to hypoxia in mutant cd and wild-type CS strain. Obtained data are discussed in terms of the relationship between neuroplasticity processes, circadian rhythm regulation, and mechanisms for adapting to extreme conditions.

References

ЛИТЕРАТУРА

Бизенкова, М. Н., Романцов, М. Г., Чеснокова, Н. П. (2006) Метаболические эффекты антиоксидантов в условиях острой гипоксической гипоксии. Фундаментальные исследования, № 1, с. 17–21.

Ветровой, О. В., Рыбникова, Е. А., Самойлов, М. О. (2017) Церебральные механизмы гипоксического/ишемического посткондиционирования. Биохимия, т. 82, № 3, с. 542–551.

Журавлев, А. В., Никитина, Е. А., Савватеева-Попова, Е. В. (2020) Роль кинуренинов в регуляции поведения и процессов памяти у дрозофилы. Интегративная физиология, т. 1, № 1, с. 40–50. https://doi.org/10.33910/2687-1270-2020-1-1-40-50

Запорожан, В. Н., Пономаренко, А. И. (2011) Механизмы влияния слабого магнитного поля на экспрессию генома: основы физической эпигенетики. Наука та інновації, т. 7, № 6, с. 50–69.

Зарубина, И. В. (2011) Современные представления о патогенезе гипоксии и ее фармакологической коррекции. Обзоры по клинической фармакологии и лекарственной терапии, т. 9, № 3, с. 31–48.

Лобашев, М. Е. (1967) Генетика. 2-е изд. Л.: Изд-во ЛГУ, 752 с.

Лобашев, М. Е., Савватеев, В. Б. (1959) Физиология суточного ритма животных. М.; Л.: Изд-во АН СССР, 259 с.

Мамон, Л. А., Бондаренко, Л. В., Третьякова, И. В. и др. (1999) Последствия клеточного стресса при нарушенном синтезе белков теплового шока у дрозофилы. Вестник Санкт-Петербургского университета. Cерия 3. Биология, т. 4, № 24, с. 94–107.

Медведева, А. В., Токмачева, Е. В., Никитина, Е. А. и др. (2020) Роль гипоксии в целостности генетического аппарата и формировании памяти у дрозофилы в парадигме условно-рефлекторного подавления ухаживания. Медицинский академический журнал, т. 20, № 4, с. 45–54. https://doi.org/10.17816/MAJ51445

Boutros, S. W., Krenik, D., Holden, S. et al. (2022) Common cancer treatments targeting DNA double strand breaks affect long-term memory and relate to immediate early gene expression in a sex-dependent manner. Oncotarget, vol. 13, pp. 198–213. https://doi.org/10.18632/oncotarget.28180

Bozek, K., Kiełbasa, S. M., Kramer, A., Herzel, H. (2007) Promoter analysis of Mammalian clock controlled genes. Genomics & Informatics, vol. 18, pp. 65–74. PMID: 18546475

Caldecott, K. W., Ward, M. E., Nussenzweig, A. (2022) The threat of programmed DNA damage to neuronal genome integrity and plasticity. Nature Genetics, vol. 54, no. 2, pp. 115–120. https://doi.org/10.1038/s41588-021-01001-y

De Bont, R., van Larebeke, N. (2004) Endogenous DNA damage in humans: A review of quantitative data. Mutagenesis, vol. 19, no. 3, pp. 169–185. https://doi.org/10.1093/mutage/geh025

Hernansanz-Agustín, P., Enríquez, J. A. (2021) Generation of reactive oxygen species by mitochondria. Antioxidants, vol. 10, no. 3, article 415. https://doi.org/10.3390/antiox10030415

Ishikawa, T., Matsumoto, A., Kato, T. Jr. et al. (1999) DCRY is a Drosophila photoreceptor protein implicated in light entrainment of circadian rhythm. Genes Cells, vol. 4, no. 1, pp. 57–65. https://doi.org/10.1046/j.1365-2443.1999.00237.x

Karki, N., Vergish, S., Zoltovski, B. D. (2021) Cryptochromes: Photochemical and structural insight into magnetoreception. Protein Science, vol. 30, no. 8, pp. 1521–1534. https://doi.org/10.1002/pro.4124

Kaushik, R., Nawathean, P., Busza, A. et al. (2007) PER-TIM interactions with the photoreceptor cryptochrome mediate circadian temperature responses in Drosophila. PLoS Biology, vol. 5, no. 6, pp. 1257–1266. https://doi.org/10.1371/journal.pbio.0050146

Kincses, Z. T., Toldi, J., Vécsei, L. (2010) Kynurenines, neurodegeneration and Alzheimer’s disease. Journal of Cellular and Molecular Medicine, vol. 14, no. 8, pp. 2045–2054. https://doi.org/10.1111/j.1582-4934.2010.01123.x

Lewitt, P. A., Li, J., Lu, M. et al. (2013) 3-hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis. Movement Disorders, vol. 28, no. 12, pp. 1653–1660. https://doi.org/10.1002/mds.25555

Nikitina, E. A., Chernikova, D. A., Vasilyeva, O. V. et al. (2018) Effect of antioxidants on medium-term memory formation in mutant cardinal of Drosophila melanogaster. Biotechnology in Russia, no. 3, pp. 67–77. https://doi.org/10.1016/0234-2758-2018-34-3-67-77

Okuda, S., Nishiyama, N., Saito, H., Katsuki, H. (1996) Hydrogen peroxide-mediated neuronal cell death induced by an endogeneous neurotoxin, 3-hydroxykynurenine. Proceedings of the National Academy of Sciences of USA, vol. 93, no. 22, pp. 12553–12558. https://doi.org/10.1073/pnas.93.22.12553

Peek, C. B., Levine, D. C., Cedernaes, J. et al. (2017) Circadian clock interaction with hif1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metabolism, vol. 25, no. 1, pp. 86–92. https://doi.org/10.1016/j.cmet.2016.09.010

Smith, K. D., Fu, M. A., Brown, E. J. (2009) Tim-Tipin dysfunction creates an indispensible reliance on the ATR-Chk1 pathway for continued DNA synthesis. Journal of Cell Biology, vol. 187, no. 1, pp. 15–23. https://doi.org/10.1083/jcb.200905006

Srinivas, S. U., Tan, B. W. Q., Vellayappan, B. A., Jeyasekharan, A. D. (2019) ROS and the DNA damage response in cancer. Redox Biology, vol. 25, article 101084. https://doi.org/10.1016/j.redox.2018.101084

Suberbielle, E., Sanchez, P. E., Kravitz, A. V. et al. (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nature Neuroscience, vol. 16, no. 5, pp. 613–621. https://doi.org/10.1038/nn.3356

Vasilieva, S. A., Tokmacheva, E. V., Medvedeva, A. V. et al. (2020) The role of parental origin of chromosomes in the instability of the somatic genome in Drosophila brain cells and memory trace formation in norm and stress. Cell and Tissue Biology, vol. 14, no. 3, pp. 178–189. https://doi.org/10.1134/S1990519X20030074

Verheijen, B. M., Vermulst, M., van Leeuwen, F. W. (2018) Somatic mutations in neurons during aging and neurodegeneration. Acta Neuropathologica, vol. 135, no. 6, pp. 811–826. https://doi.org/10.1007/s00401-018-1850-y

Voccoli, V., Tonazzini, I., Signore, G. et al. (2014) Role of extracellular calcium and mitochondrial oxygen species in psychosine-induced oligoden-drocyte cell death. Cell Death and Disease, vol. 5, no. 11, article e1529. https://doi.org/10.1038/cddis.2014.483

Wu, J. S., Luo, L. (2006) A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nature Protocols, vol. 1, no. 4, pp. 2110–2115. https://doi.org/10.1038/nprot.2006.336

Zatsepina, O. G., Nikitina, E. A., Shilova, V. Y. et al. (2021) Hsp70 affects memory formation and behaviorally relevant gene expression in Drosophila melanogaster. Cell Stress and Chaperones, vol. 26, no. 3, pp. 575–594. https://doi.org/10.1007/s12192-021-01203-7

Zhuravlev, A. V., Zakharov, G. A., Shchegolev, B. F., Savvateeva-Popova, E. V. (2016) Antioxidant properties of kynurenines: Density functional theory calculations. PLOS Computational Biology, vol. 12, no. 11, article e1005213. https://doi.org/10.1371/journal.pcbi.1005213

REFERENCES

Bizenkova, M. N., Romantsov, M. G., Chesnokova, N. P. (2006) Metabolicheskie effekty antioksidantov v usloviyakh ostroj gipoksicheskoj gipoksii [Metabolic effects of antioxidants in acute anoxic hepoxia]. Fundamental’nye issledovaniya, no. 1, pp. 17–21. (In Russian)

Boutros, S. W., Krenik, D., Holden, S. et al. (2022) Common cancer treatments targeting DNA double strand breaks affect long-term memory and relate to immediate early gene expression in a sex-dependent manner. Oncotarget, vol. 13, pp. 198–213. https://doi.org/10.18632/oncotarget.28180 (In English)

Bozek, K., Kiełbasa, S. M., Kramer, A., Herzel, H. (2007) Promoter analysis of Mammalian clock controlled genes. Genomics & Informatics, vol. 18, pp. 65–74. PMID: 18546475 (In English)

Caldecott, K. W., Ward, M. E., Nussenzweig, A. (2022) The threat of programmed DNA damage to neuronal genome integrity and plasticity. Nature Genetics, vol. 54, no. 2, pp. 115–120. https://doi.org/10.1038/s41588-021-01001-y (In English)

De Bont, R., van Larebeke, N. (2004) Endogenous DNA damage in humans: A review of quantitative data. Mutagenesis, vol. 19, no. 3, pp. 169–185. https://doi.org/10.1093/mutage/geh025 (In English)

Hernansanz-Agustín, P., Enríquez, J. A. (2021) Generation of reactive oxygen species by mitochondria. Antioxidants, vol. 10, no. 3, article 415. https://doi.org/10.3390/antiox10030415 (In English)

Ishikawa, T., Matsumoto, A., Kato, T. Jr. et al. (1999) DCRY is a Drosophila photoreceptor protein implicated in light entrainment of circadian rhythm. Genes Cells, vol. 4, no. 1, pp. 57–65. https://doi.org/10.1046/j.1365-2443.1999.00237.x (In English)

Karki, N., Vergish, S., Zoltovski, B. D. (2021) Cryptochromes: Photochemical and structural insight into magnetoreception. Protein Science, vol. 30, no. 8, pp. 1521–1534. https://doi.org/10.1002/pro.4124 (In English)

Kaushik, R., Nawathean, P., Busza, A. et al. (2007) PER-TIM interactions with the photoreceptor cryptochrome mediate circadian temperature responses in Drosophila. PLoS Biology, vol. 5, no. 6, pp. 1257–1266. https://doi.org/10.1371/journal.pbio.0050146 (In English)

Kincses, Z. T., Toldi, J., Vécsei, L. (2010) Kynurenines, neurodegeneration and Alzheimer’s disease. Journal of Cellular and Molecular Medicine, vol. 14, no. 8, pp. 2045–2054. https://doi.org/10.1111/j.1582-4934.2010.01123.x (In English)

Lewitt, P. A., Li, J., Lu, M. et al. (2013) 3-hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis. Movement Disorders, vol. 28, no. 12, pp. 1653–1660. https://doi.org/10.1002/mds.25555 (In English)

Lobashev, M. E. (1967) Genetika [Genetics]. 2nd ed. Leningrad: Pushkin Leningrad State University Publ., 752 p. (In Russian)

Lobashev, M. E., Savvateev, V. B. (1959) Fiziologiya sutochnogo ritma zhivotnykh [Physiology of daily rhythm of animals]. Moscow; Leningrad: USSR Academy of Sciences Publ., 259 p. (In Russian)

Mamon, L. A., Bondarenko, L. V., Tretyakova, I. V. et al. (1999) Posledstviya kletochnogo stressa pri narushennom sinteze belkov teplovogo shoka u drozofily [Consequences of cell stress in conditions of disturbed synthesis of heat shock proteins in Drosophila melanogaster]. Vestnik Sankt-Peterburgskogo universiteta. Seriya 3. Biologiya — Vestnik of Saint Petersburg University. Series 3. Biology, vol. 4, no. 24, pp. 94–107. (In Russian)

Medvedeva, A. V., Tokmacheva, E. V., Nikitina, E. A. et al. (2020) Rol’ gipoksii v tselostnosti geneticheskogo apparata i formirovanii pamyati u drozofily v paradigme uslovno-reflektornogo podavleniya ukhazhivaniya [The role of hypoxia the integrity of the genetic apparatus and the formation of memory in Drosophila in the paradigm of conditioned reflex suppression courtship]. Meditsinskij akademicheskij zhurnal — Medical Academic Journal, vol. 20, no. 4, pp. 45–54. https://doi.org/10.17816/MAJ51445 (In Russian)

Nikitina, E. A., Chernikova, D. A., Vasilyeva, O. V. et al. (2018) Effect of antioxidants on medium-term memory formation in mutant cardinal of Drosophila melanogaster. Biotechnology in Russia, no. 3, pp. 67–77. https://doi.org/10.1016/0234-2758-2018-34-3-67-77 (In English)

Okuda, S., Nishiyama, N., Saito, H., Katsuki, H. (1996) Hydrogen peroxide-mediated neuronal cell death induced by an endogeneous neurotoxin, 3-hydroxykynurenine. Proceedings of the National Academy of Sciences of USA, vol. 93, no. 22, pp. 12553–12558. https://doi.org/10.1073/pnas.93.22.12553 (In English)

Peek, C. B., Levine, D. C., Cedernaes, J. et al. (2017) Circadian clock interaction with hif1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metabolism, vol. 25, no. 1, pp. 86–92. https://doi.org/10.1016/j.cmet.2016.09.010 (In English)

Smith, K. D., Fu, M. A., Brown, E. J. (2009) Tim-Tipin dysfunction creates an indispensible reliance on the ATR-Chk1 pathway for continued DNA synthesis. Journal of Cell Biology, vol. 187, no. 1, pp. 15–23. https://doi.org/10.1083/jcb.200905006 (In English)

Srinivas, S. U., Tan, B. W. Q., Vellayappan, B. A., Jeyasekharan, A. D. (2019) ROS and the DNA damage response in cancer. Redox Biology, vol. 25, article 101084. https://doi.org/10.1016/j.redox.2018.101084 (In English)

Suberbielle, E., Sanchez, P. E., Kravitz, A. V. et al. (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nature Neuroscience, vol. 16, no. 5, pp. 613–621. https://doi.org/10.1038/nn.3356 (In English)

Vasilieva, S. A., Tokmacheva, E. V., Medvedeva, A. V. et al. (2020) The role of parental origin of chromosomes in the instability of the somatic genome in Drosophila brain cells and memory trace formation in norm and stress. Cell and Tissue Biology, vol. 14, no. 3, pp. 178–189. https://doi.org/10.1134/S1990519X20030074 (In English)

Verheijen, B. M., Vermulst, M., van Leeuwen, F. W. (2018) Somatic mutations in neurons during aging and neurodegeneration. Acta Neuropathologica, vol. 135, no. 6, pp. 811–826. https://doi.org/10.1007/s00401-018-1850-y (In English)

Vetrovoj, O. V., Rybnikova, E. A., Samojlov, M. O. (2017) Tserebral’nye mekhanismy gipoksicheskogo/ishemicheskogo postkonditsionirivaniya [Cerebral mechanisms of hypoxic/ischemic postconditioning]. Biochemistry (Moscow), vol. 82, no. 3, pp. 392–400. (In Russian)

Voccoli, V., Tonazzini, I., Signore, G. et al. (2014) Role of extracellular calcium and mitochondrial oxygen species in psychosine-induced oligoden-drocyte cell death. Cell Death and Disease, vol. 5, no. 11, article e1529. https://doi.org/10.1038/cddis.2014.483 (In English)

Wu, J. S., Luo, L. (2006) A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nature Protocols, vol. 1, no. 4, pp. 2110–2115. https://doi.org/10.1038/nprot.2006.336 (In English)

Zaporozhan, V. N., Ponomarenko, A. I. (2011) Mekhanismy vliyaniya slabogo magnitnogo polya na ekspressiyu genoma: Osnovy fizicheskoj epigenetiki [Mechanisms of weak magnetic field influence on gene expression: Basics of physical epigenetics]. Nauka ta innovatsii, vol. 7, no. 6, pp. 50–69. (In Russian)

Zarubina, I. V. (2011) Sovremennye predstavleniya o patogeneze gipoksii i ee farmakologicheskoj korrektsii [Current ideas about the pathogenesis of hypoxia and its pharmacological correction]. Obzory po klinicheskoj farmakologii i lekarstvennoj terapii, vol. 9, no. 3, pp. 31–48. (In Russian)

Zatsepina, O. G., Nikitina, E. A., Shilova, V. Y. et al. (2021) Hsp70 affects memory formation and behaviorally relevant gene expression in Drosophila melanogaster. Cell Stress and Chaperones, vol. 26, no. 3, pp. 575–594. https://doi.org/10.1007/s12192-021-01203-7 (In English)

Zhuravlev, A. V., Nikitina, E. A., Savvateeva-Popova, E. V. (2020) Rol’ kinureninov v regulyatsii povedeniya i protsessov pamyati u drozofily [Role of kynurenines in regulation of behavior and memory processes in drosophila]. Integrativnaya fiziologiya — Integrative Physiology, vol. 1, no. 1, pp. 40–50. https://doi.org/10.33910/2687-1270-2020-1-1-40-50 (In Russian)

Zhuravlev, A. V., Zakharov, G. A., Shchegolev, B. F., Savvateeva-Popova, E. V. (2016) Antioxidant properties of kynurenines: Density functional theory calculations. PLOS Computational Biology, vol. 12, no. 11, article e1005213. https://doi.org/10.1371/journal.pcbi.1005213 (In English)

Published

2022-06-30

Issue

Section

Experimental articles