Интраназально вводимый инсулин, но не С-пептид проинсулина, нормализует гормональные показатели и экспрессию гипоталамических генов у самцов крыс с диабетом 2-го типа и ожирением

Авторы

  • Кира Викторовна Деркач Институт эволюционной физиологии и биохимии им. И. М. Сеченова РАН https://orcid.org/0000-0001-6555-9540
  • Андрей Андреевич Бахтюков Институт эволюционной физиологии и биохимии им. И. М. Сеченова РАН https://orcid.org/0000-0002-2060-2020
  • Наталия Евгеньевна Басова Институт эволюционной физиологии и биохимии им. И. М. Сеченова РАН https://orcid.org/0000-0002-7316-2882
  • Вера Михайловна Бондарева Институт эволюционной физиологии и биохимии им. И. М. Сеченова РАН https://orcid.org/0000-0002-3761-1222
  • Александр Олегович Шпаков Институт эволюционной физиологии и биохимии им. И. М. Сеченова РАН https://orcid.org/0000-0002-4293-3162

DOI:

https://doi.org/10.33910/2687-1270-2022-3-1-41-57

Ключевые слова:

инсулин, C-пептид проинсулина, интраназальное введение, диабет 2 типа, ожирение, гиперинсулинемия, гипоталамус, лептин, глюкозотолерантность, тиреоидный статус

Аннотация

Сахарный диабет 2-го типа (СД2) характеризуется нарушениями в сигнальных системах мозга, в том числе регулируемых инсулином. Для восстановления инсулиновой сигнализации в мозге может быть применен интраназально вводимый инсулин (ИИ). Эффективность ИИ, как показано нами ранее при СД1 и инсулинодефицитном СД2, повышается при совместном применении с интраназально вводимым С-пептидом (ИС). Целью работы было изучить влияние 9-дневного лечения крыс с диет-индуцированным СД2 с ожирением и гиперинсулинемией с помощью ИИ (0,5 МЕ/крысу/сутки) и его комбинации с ИС (36 мкг/крысу/сутки) на метаболические показатели, базальные и стимулированные глюкозой уровни инсулина, адипокинов, глюкагоноподобного пептида-1, грелина, гормональный статус тиреоидной и гонадной систем, уровни инсулина и лептина в гипоталамусе и экспрессию гипоталамических генов, кодирующих рецепторы и пищевые факторы. Монотерапия ИИ нормализовала сниженный при СД2 уровень инсулина в гипоталамусе, улучшала глюкозный гомеостаз, тиреоидный статус, ответы инсулина, лептина и инкретинов на глюкозу, восстанавливала экспрессию гипоталамических генов проопиомеланокортина и M4-меланокортинового рецептора, опосредующих снижение аппетита, и снижала экспрессию гена орексигенного нейропептида Y. Совместное применение ИИ и ИС не усиливало эффекты ИИ. Монотерапия ИС была неэффективной и даже усугубляла метаболические показатели. Таким образом, у крыс с СД2 и гиперинсулинемией ИИ улучшал метаболические и гормональные показатели, что обусловлено нормализацией сниженного в результате ослабления рецептор-опосредуемого транспорта через гематоэнцефалический барьер уровня инсулина в мозге, в то время как ИС, в том числе в комбинации с ИИ, оказался неэффективным.

Библиографические ссылки

Al-Mrabeh, A. (2021) β-Cell dysfunction, hepatic lipid metabolism, and cardiovascular health in type 2 diabetes: New directions of research and novel therapeutic strategies. Biomedicines, vol. 9, no. 2, article 226. https://doi.org/10.3390/biomedicines9020226 (In English)

Alves, M. T., Ortiz, M. M. O., Dos Reis, G. V. O. P. et al. (2019) The dual effect of C-peptide on cellular activation and atherosclerosis: Protective or not? Diabetes Metabolism Research and Reviews, vol. 35, no. 1, article e3071. https://doi.org/10.1002/dmrr.3071 (In English)

Badenes, R., Qeva, E., Giordano, G. et al. (2021) Intranasal insulin administration to prevent delayed neurocognitive recovery and postoperative neurocognitive disorder: A narrative review. International Journal of Environmental Research and Public Health, vol. 18, no. 5, article 2681. https://doi.org/10.3390/ijerph18052681 (In English)

Biondi, B., Kahaly, G. J., Robertson, R. P. (2019) Thyroid dysfunction and diabetes mellitus: Two closely associated disorders. Endocrine Reviews, vol. 40, no. 3, pp. 789–824. https://doi.org/10.1210/er.2018-00163 (In English)

Chen, Z., He, J., Ma, Q., Xiao, M. (2021) Association between c-peptide level and subclinical myocardial injury. Frontiers in Endocrinology (Lausanne). vol. 12, article 680501. https://doi.org/10.3389/fendo.2021.680501 (In English)

Derkach, K. V., Bondareva, V. M., Shpakov, A. O. (2018) Coadministration of intranasally delivered insulin and proinsulin C-peptide to rats with the types 1 and 2 diabetes mellitus restores their metabolic parameters. Advances in Gerontology, vol. 8, no. 2, pp. 140–146. https://doi.org/10.1134/S2079057018020030 (In English)

Derkach, K. V., Bondareva, V. M., Shpakov, A. O. (2019a) Regulatory effects of intranasal C-peptide and insulin on thyroid and androgenic status of male rats with moderate type 1 diabetes mellitus. Journal of Evolutional Biochemistry and Physiology, vol. 55, no. 6, pp. 493–496. https://doi.org/10.1134/S0022093019060073 (In English)

Derkach, K. V., Bondareva, V. M., Perminova, A. A., Shpakov, A. O. (2019b) C-peptide and insulin during combined intranasal administration improve the metabolic parameters and activity of the adenylate cyclase system in the hypothalamus, myocardium, and epididymal fat of rats with type 2 diabetes. Cell Tissue Biology, vol. 13, no. 3, pp. 228–236. https://doi.org/10.1134/S1990519X19030039 (In English)

Derkach, K. V., Ivantsov, A. O., Chistyakova, O. V. et al. (2017) Intranasal insulin restores metabolic parameters and insulin sensitivity in rats with metabolic syndrome. Bulletin of Experimental Biology and Medicine, vol. 163, no. 2, pp. 184–189. https://doi.org/10.1007/s10517-017-3762-6 (In English)

Derkach, K. V., Shpakova, E. A., Bondareva, V. M. et al. (2018b) The effect of intranasal administration of proinsulin C-peptide and its C-terminal fragment on metabolic parameters in rats with streptozotocin diabetes. Journal of Evolutional Biochemistry and Physiology, vol. 54, no. 3, pp. 242–245. https://doi.org/10.1134/S0022093018030092 (In English)

Derkach, K. V., Shpakova, E. A., Titov, A. M. et al. (2015) Intranasal and intramuscular administration of lysine-palmitoylated peptide 612–627 of thyroid-stimulating hormone receptor increases the level of thyroid hormones in rats. International Journal of Peptide Research and Therapeutics, vol. 21, no. 3, pp. 249–260. https://doi.org/10.1007/s10989-014-9452-6 (In English)

Derkach, K., Zakharova, I., Zorina, I. et al. (2019) The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS One, vol. 14, no. 3, article e0213779. https://doi.org/10.1371/journal.pone.0213779 (In English)

Fekete, C., Singru, P. S., Sanchez, E. et al. (2006) Differential effects of central leptin, insulin, or glucose administration during fasting on the hypothalamic-pituitary-thyroid axis and feeding-related neurons in the arcuate nucleus. Endocrinology, vol. 147, no. 1, pp. 520–529. https://doi.org/10.1210/en.2005-0956 (In English)

Ghamari-Langroudi, M., Vella, K. R., Srisai, D. et al. (2010) Regulation of thyrotropin-releasing hormone-expressing neurons in paraventricular nucleus of the hypothalamus by signals of adiposity. Molecular Endocrinology, vol. 4, no. 12, pp. 2366–2381. https://doi.org/10.1210/me.2010-0203 (In English)

Hill, J. W., Elmquist, J. K., Elias, C. F. (2008) Hypothalamic pathways linking energy balance and reproduction. American Journal of Physiology, Endocrinology and Metabolism, vol. 294, no. 5, pp. E827–E832. https://doi.org/10.1152/ajpendo.00670.2007 (In English)

Hu, S.-H., Jiang, T., Yang, S.-S., Yang, Y. (2013) Pioglitazone ameliorates intracerebral insulin resistance and tau-protein hyperphosphorylation in rats with type 2 diabetes. Experimental and Clinical Endocrinology and Diabetes, vol. 121, no. 4, pp. 220–224. https://doi.org/10.1055/s-0032-1333277 (In English)

Huang, Y., He, Z., Gao, Y. et al. (2018) Phosphoinositide 3-Kinase is integral for the acute activity of leptin and insulin in male arcuate NPY/AgRP Neurons. Journal of the Endocrine Society, vol. 2, no. 6, pp. 518–532. https://doi.org/10.1210/js.2018-00061 (In English)

Kashyap, B., Hanson, L. R., Frey II, W. H. (2020) Intranasal insulin: A treatment strategy for addiction. Neurotherapeutics, vol. 17, no. 1, pp. 105–115. https://doi.org/10.1007/s13311-019-00822-4 (In English)

Lee, S.-H., Park, S.-Y., Choi, C.-S. (2022) Insulin resistance: From mechanisms to therapeutic strategies. Diabetes and Metabolism Journal, vol. 46, no. 1, pp. 15–37. https://doi.org/10.4093/dmj.2021.0280 (In English)

Lu, J., Xu, Z. (2019) Efficacy of intranasal insulin in improving cognition in mild cognitive impairment and alzheimer disease: A systematic review and meta-analysis. American Journal of Therapy, vol. 26, no. 6, pp. e756–e762. https://doi.org/10.1097/MJT.0000000000000926 (In English)

McCarty, M. F. (1995) Central insulin may up-regulate thyroid activity by suppressing neuropeptide Y release in the paraventricular nucleus. Medicine Hypotheses, vol. 45, no. 2, pp. 193–199. https://doi.org/10.1016/0306-9877(95)90068-3 (In English)

Navarro, V. M., Kaiser, U. B. (2013) Metabolic influences on neuroendocrine regulation of reproduction. Current Opinion in Endocrinology, Diabetes and Obesity, vol. 20, no. 4, pp. 335–341. https://doi.org/10.1097/MED.0b013e32836318ce (In English)

Pan, W., Hsuchou, H., He, Y. et al. (2008) Astrocyte leptin receptor (ObR) and leptin transport in adult-onset obese mice. Endocrinology, vol. 149, no. 6, pp. 2798–2806. https://doi.org/10.1210/en.2007-1673 (In English)

Rhea, E. M., Humann, S. R., Nirkhe, S. et al. (2017) Intranasal insulin transport is preserved in aged samp8 mice and is altered by albumin and insulin receptor inhibition. Journal of Alzheimer’s Disease, vol. 7, no. 1, pp. 241–252. https://doi.org/10.3233/JAD-161095 (In English)

Rhea, E. M., Nirkhe, S., Nguyen, S. et al. (2019) Molecular mechanisms of intranasal insulin in SAMP8 mice. Journal of Alzheimer’s Disease, vol. 71, no. 4, pp. 1361–1373. https://doi.org/10.3233/JAD-190707 (In English)

Romanova, I. V., Derkach, K. V., Mikhrina, A. L. et al. (2018) Leptin, dopamine and serotonin receptors in hypothalamic POMC-neurons of normal and obese rodents. Neurochemical Research, vol. 43, no. 4, pp. 821–837. https://doi.org/10.1007/s11064-018-2485-z (In English)

Sandin, E. S., Folberth, J., Müller-Fielitz, H. et al. (2021) Is LRP2 involved in leptin transport over the blood-brain barrier and development of obesity? International Journal of Molecular Science, vol. 22, no. 9, article 4998. https://doi.org/10.3390/ijms22094998 (In English)

Scherer, T., Sakamoto, K., Buettner, C. (2021) Brain insulin signalling in metabolic homeostasis and disease. Nature Reviews. Endocrinology, vol. 17, no. 8, pp. 468–483. https://doi.org/10.1038/s41574-021-00498-x (In English)

Sciacqua, A., Succurro, E., Armentaro, G. et. al. (2021) Pharmacological treatment of type 2 diabetes in elderly patients with heart failure: Randomized trials and beyond. Heart Failure Reviews. [Online]. Available at: https://doi.org/10.1007/s10741-021-10182-x (accessed 17.01.2022). (In English)

Serbis, A., Giapros, V., Kotanidou, E. P. et al. (2021) Diagnosis, treatment and prevention of type 2 diabetes mellitus in children and adolescents. World Journal of Diabetes, vol. 12, no. 4, pp. 344–365. https://doi.org/10.4239/wjd.v12.i4.344 (In English)

Shaughness, M., Acs, D., Brabazon, F. (2020) Role of insulin in neurotrauma and neurodegeneration: A review. Frontiers in Neuroscience, vol. 14, article 547175. https://doi.org/10.3389/fnins.2020.547175 (In English)

Shen, J., Greenberg, B. H. (2021) Diabetes management in patients with heart failure. Diabetes Metabolism Journal, vol. 45, no. 2, pp. 158–172. https://doi.org/10.4093/dmj.2020.0296 (In English)

Shpakov, A. O. (2017) Mechanisms of action and therapeutic potential of proinsulin C-peptide. Journal of Evolutional Biochemistry and Physiology, vol. 53, no. 3, pp. 180–190. https://doi.org/10.1134/S0022093017030024 (In English)

Shpakov, A. O. (2021) Improvement effect of metformin on female and male reproduction in endocrine pathologies and its mechanisms. Pharmaceuticals, vol. 14, no. 1, article 42. https://doi.org/10.3390/ph14010042 (In English)

Shpakov, A. O., Derkach, K. V., Berstein, L. M. (2015) Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Science OA, vol. 1, no. 3, article FSO25. https://doi.org/10.4155/fso.15.23 (In English)

Shpakov, A. O., Derkach, K. V., Surkova, E. V. et al. (2019) Perspektivy primeneniya intranazal’no vvodimogo insulina dlya korrektsii metabolicheskih i gormonal’nykh narushenij pri sakharnom diabete i metabolicheskom sindrome [Prospects for the use of intranasally administered insulin for the correction of metabolic and hormonal disorders in diabetes mellitus and metabolic syndrome]. Problemy endokrinologii — Problems of Endocrinology, vol. 65, no. 5, pp. 389–395. https://doi.org/10.14341/probl9960 (In Russian)

Sukhov, I. B., Derkach, K. V., Chistyakova, O. V. et al. (2016) Functional state of hypothalamic signaling systems in rats with type 2 diabetes mellitus treated with intranasal insulin. Journal of Evolutional Biochemistry and Physiology, vol. 52, no. 3, pp. 204–216. https://doi.org/10.1134/S0022093016030030 (In English)

Sukhov, I. B., Shipilov, V. N., Chistyakova, O. V. et al. (2013) Long-term intranasal insulin administration improves spatial memory in male rats with prolonged type 1 diabetes mellitus and in healthy rats. Doklady Biological Science, vol. 453, no. 5, pp. 349–352. https://doi.org/10.1134/S001249661306015X (In English)

Varela, L., Horvath, T. L. (2012) Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Reports, vol. 13, no. 12, pp. 1079–1086. https://doi.org/10.1038/embor.2012.174 (In English)

Wang, Y., Sun, W., Miao, J. et al. (2021) Higher fasting C-peptide is associated with post-stroke depression: A multicenter prospective cohort study. BMC Neurology, vol. 21, no. 1, article 383. https://doi.org/10.1186/s12883-021-02413-3 (In English)

Washburn, R. L., Mueller, K., Kaur, G. et al. (2021) C-Peptide as a therapy for type 1 diabetes mellitus. Biomedicines, vol. 9, no. 3, article 270. https://doi.org/10.3390/biomedicines9030270 (In English)

Wysham, C., Shubrook, J. (2020) Beta-cell failure in type 2 diabetes: Mechanisms, markers, and clinical implications. Postgraduate Medicine, vol. 132, no. 8, pp. 676–686. https://doi.org/10.1080/00325481.2020.1771047 (In English)

Zakharova, I. O., Bayunova, L. V., Zorina, I. I. et al. (2021) Insulin and α-tocopherol enhance the protective effect of each other on brain cortical neurons under oxidative stress conditions and in rat two-vessel forebrain ischemia/reperfusion injury. International Journal of Molecular Science, vol. 22, no. 21, article 11768. https://doi.org/10.3390/ijms222111768 (In English)

Zhang, Z.-Y., Dodd, G. T., Tiganis, T. (2015) Protein tyrosine phosphatases in hypothalamic insulin and leptin signaling. Trends in Pharmacological Science, vol. 36, no. 10, pp. 661–674. https://doi.org/10.1016/j.tips.2015.07.003 (In English)

Загрузки

Опубликован

30.06.2022

Выпуск

Раздел

Экспериментальные статьи