The use of atomic force microscopy and organotypic tissue culture to study the effect of a short arginine-containing peptide with analgesic potential on the sensory neuron membrane

Authors

  • Maksim M. Khalisov Pavlov Institute of Physiology, Russian Academy of Sciences
  • Valentina A. Penniyaynen Pavlov Institute of Physiology, Russian Academy of Sciences
  • Alexander V. Ankudinov Ioffe Institute, Russian Academy of Sciences
  • Svetlana A. Podzorova Pavlov Institute of Physiology, Russian Academy of Sciences
  • Boris V. Krylov Pavlov Institute of Physiology, Russian Academy of Sciences

DOI:

https://doi.org/10.33910/2687-1270-2022-3-1-58-68

Keywords:

sensory neurons, short peptides, Ac-RERR-NH2, atomic force microscopy, organotypic nerve culture method

Abstract

Opiate use to treat chronic pain is known to be associated with negative side effects. Therefore, the development of new safe and effective non-opioid analgesics is both important and urgent goal of modern science. Previously, we showed that tetrapeptide Ac-RERR-NH2 has potential as an analgesic drug substance, since it can reduce the excitability of nociceptive neurons responsible for encoding nociceptive signals. The effect of sub-nanomolar concentration of Ac-RERR-NH2 tetrapeptide on embryonic sensory neurons was investigated with the use of atomic force microscopy (AFM) and organotypic tissue culture method. The quasi-static PeakForce QNM AFM mode was used, which allows mapping of local mechanical cell properties. Following administration of the substance, sensory neurons tended to decrease their stiffness. This result is based on the analysis of the values of the apparent Young’s modulus of sensory neurons and their deformation, controlled for the slipping of the tip of the probe over the surface under study. The area index (AI) criterion showed that the studied tetrapeptide has pronounced neurite-stimulating properties. The data obtained suggest that Ac-RERR-NH2, acting at very low concentrations, is able to trigger an as yet unidentified intracellular cascade regulating the growth of neurites of sensory neurons.

References

ЛИТЕРАТУРА

Анкудинов, А. В., Халисов, М. М. (2020) Измерения контактной жесткости в атомно-силовом микроскопе. Журнал технической физики, т. 90, № 11, с. 1951–1957. https://doi.org/10.21883/JTF.2020.11.49989.117-20

Пеннияйнен, В. А., Халисов, М. М., Подзорова, С. А. и др. (2020) Возможные антиноцицептивные механизмы, запускаемые наномолярными концентрациями уабаина в первичных сенсорных нейронах. Российский физиологический журнал им. И. М. Сеченова, т. 106, № 10, с. 1289–1301. https://doi.org/10.31857/S0869813920100088

Рогачевский, И. В., Калинина, А. Д., Пеннияйнен, В. А. и др. (2021) Возможный механизм модуляции короткими пептидами медленных натриевых каналов мембраны сенсорного нейрона. Биофизика, т. 66, № 4, С. 684–695. https://doi.org/10.31857/S0006302921040074

Тимощук, К. И., Халисов, М. М., Пеннияйнен, В. А. и др. (2019) Исследование механических характеристик нативных фибробластов с помощью атомно-силового микроскопа. Письма в журнал технической физики, т. 45, № 18, с. 44–47. https://doi.org/10.21883/PJTF.2019.18.48238.17878

Халисов, М. М., Пеннияйнен, В. А., Есикова, Н. A. и др. (2017) Особенности рецептор- и трансдуктор-опосредованной активации внутриклеточных сигнальных каскадов в сенсорном нейроне, выявленные методом атомно-силовой микроскопии. Письма в журнал технической физики, т. 43, № 1, с. 89–94. https://doi.org/10.21883/PJTF.2017.01.44094.16394

Халисов, М. М., Пеннияйнен, В. А., Подзорова, С. А. и др. (2021) О молекулярной природе различий в реакции сенсорных нейронов и фибробластов на уабаин. Журнал технической физики, т. 91, № 5, с. 882–888. https://doi.org/10.21883/JTF.2021.05.50704.272-20

Binnig, G., Quate, C. F., Gerber, Ch. (1986) Atomic force microscope. Physical Review Letters, vol. 56, no. 9, pp. 930–933. https://doi.org/10.1103/PhysRevLett.56.930

Haase, K, Pelling, A.E. (2015) Investigating cell mechanics with atomic force microscopy. Journal of The Royal Society Interface, vol. 12, no. 104, article 20140970. http://dx.doi.org/10.1098/rsif.2014.0970

Hu, J., Chen, S., Huang, D. et al. (2020) Global mapping of live cell mechanical features using PeakForce QNM AFM. Biophysics Reports, vol. 6, no. 1, pp. 9–18. https://doi.org/10.1007/s41048-019-00103-9

Hutter, J. L., Bechhoefer, J. (1993) Calibration of atomic-force microscope tips. Review of Scientific Instruments, vol. 64, no. 7, pp. 1868–1873. https://doi.org/10.1063/1.1143970

Kuznetsova, T. G., Starodubtseva, M. N., Yegorenkov, N. I., et al. (2007) Atomic force microscopy probing of cell elasticity. Micron, vol. 38, no. 8, pp. 824–833. https://doi.org/doi:10.1016/j.micron.2007.06.011

Nečas, D., Klapetek, P. (2012) Gwyddion: An open-source software for SPM data analysis. Central European Journal of Physics, vol. 10, no. 1, pp. 181–188. https://doi.org/10.2478/s11534-011-0096-2

Pittenger, B., Slade, A. (2013) Performing quantitative nanomechanical AFM measurements on live cells. Microscopy Today, vol. 21, no. 6, pp. 12–17. https://doi.org/10.1017/S1551929513001077

Pittenger, B., Erina, N., Su, C. (2014) Mechanical property mapping at the nanoscale using PeakForce QNM scanning probe technique. In: A. Tiwari (ed.). Nanomechanical analysis of high performance materials. Dordrecht: Springer Publ., pp. 31–51. https://doi.org/10.1007/978-94-007-6919-9_2

Plakhova, V. B., Penniyaynen, V. A., Yachnev, I. L. et al. (2019) Src kinase controls signaling pathways in sensory neuron triggered by low-power infrared radiation. Canadian Journal of Physiology and Pharmacology, vol. 97, no. 5, pp. 400–406. https://doi.org/10.1139/cjpp-2018-0602

Plakhova, V. B., Penniyaynen, V. A., Rogachevskii, I. V. et al. (2020) Dual mechanism of modulation of NaV1.8 sodium channels by ouabain. Canadian Journal of Physiology and Pharmacology, vol. 98, no. 11, pp. 785–802. https://doi.org/10.1139/cjpp-2020-0197

Rogachevskii, I. V., Plakhova, V. B., Penniyaynen, V. A. et al. (2022) New approaches to the design of analgesic medicinal substances. Canadian Journal of Physiology and Pharmacology, vol. 100, no. 1, pp. 43–52. https://doi.org/10.1139/cjpp-2021-0286

Sneddon, I. N. (1965) The relation between load and penetration in the axi-symmetric boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, vol. 3, no. 1, pp. 47–57. https://doi.org/10.1016/0020-7225(65)90019-4

REFERENCES

Ankudinov, A. V., Khalisov, M. M. (2020) Izmereniya kontaktnoj zhestkosti v atomno-silovom mikroskope [Measurements of contact stiffness in an atomic force microscope]. Zhurnal tekhnicheskoj fiziki, vol. 90, no. 11, pp. 1951–1957. https://doi.org/10.21883/JTF.2020.11.49989.117-20 (In Russian)

Binnig, G., Quate, C. F., Gerber, Ch. (1986) Atomic force microscope. Physical Review Letters, vol. 56, no. 9, pp. 930–933. https://doi.org/10.1103/PhysRevLett.56.930 (In English)

Haase, K, Pelling, A.E. (2015) Investigating cell mechanics with atomic force microscopy. Journal of The Royal Society Interface, vol. 12, no. 104, article 20140970. http://dx.doi.org/10.1098/rsif.2014.0970 (In English)

Hu, J., Chen, S., Huang, D. et al. (2020) Global mapping of live cell mechanical features using PeakForce QNM AFM. Biophysics Reports, vol. 6, no. 1, pp. 9–18. https://doi.org/10.1007/s41048-019-00103-9 (In English)

Hutter, J. L., Bechhoefer, J. (1993) Calibration of atomic-force microscope tips. Review of Scientific Instruments, vol. 64, no. 7, pp. 1868–1873. https://doi.org/10.1063/1.1143970 (In English)

Khalisov, M. M., Penniyaynen, V. A., Esikova, N. A. et al. (2017) Osobennosti retseptor- i transduktor-oposredovannoj aktivatsii vnutrikletochnykh signal’nykh kaskadov v sensornom nejrone, vyyavlennye metodom atomno-silovoj mikroskopii [Features of receptor and transducer-mediated activation of intracellular signaling cascades in the sensory neuron detected by atomic force microscopy]. Pis’ma v zhurnal tekhnicheskoj fiziki, vol. 43, no. 1, pp. 89–94. https://doi.org/10.21883/PJTF.2017.01.44094.16394 (In Russian)

Khalisov, M. M., Penniyaynen, V. A., Podzorova, S. A. et al. (2021) O molekulyarnoj prirode razlichij v reaktsii sensornykh nejronov i fibroblastov na uabain [On the molecular nature of differences in the response of sensory neurons and fibroblasts to uabain]. Zhurnal tekhnicheskoj fiziki, vol. 91, no. 5, pp. 882–888. https://doi.org/10.21883/JTF.2021.05.50704.272-20 (In Russian)

Kuznetsova, T. G., Starodubtseva, M. N., Yegorenkov, N. I., et al. (2007) Atomic force microscopy probing of cell elasticity. Micron, vol. 38, no. 8, pp. 824–833. https://doi.org/doi:10.1016/j.micron.2007.06.011 (In English)

Nečas, D., Klapetek, P. (2012) Gwyddion: An open-source software for SPM data analysis. Central European Journal of Physics, vol. 10, no. 1, pp. 181–188. https://doi.org/10.2478/s11534-011-0096-2 (In English)

Penniyaynen, V. A., Khalisov, M. M., Podzorova, S. A. et al. (2020) Vozmozhnye antinotsitseptivnye mekhanizmy, zapuskaemye nanomolyarnymi kontsentratsiyami uabaina v pervichnykh sensornykh nejronakh [Possible antinociceptive mechanisms triggered by nanomolar concentrations of uabain in primary sensory neurons]. Rossijskij fiziologicheskij zhurnal im. I. M. Sechenova, vol. 106, no. 10, pp. 1289–1301. https://doi.org/10.31857/S0869813920100088 (In Russian)

Pittenger, B., Slade, A. (2013) Performing quantitative nanomechanical AFM measurements on live cells. Microscopy Today, vol. 21, no. 6, pp. 12–17. https://doi.org/10.1017/S1551929513001077 (In English)

Pittenger, B., Erina, N., Su, C. (2014) Mechanical property mapping at the nanoscale using PeakForce QNM scanning probe technique. In: A. Tiwari (ed.). Nanomechanical analysis of high performance materials. Dordrecht: Springer Publ., pp. 31–51. https://doi.org/10.1007/978-94-007-6919-9_2 (In English)

Plakhova, V. B., Penniyaynen, V. A., Yachnev, I. L. et al. (2019). Src kinase controls signaling pathways in sensory neuron triggered by low-power infrared radiation. Canadian Journal of Physiology and Pharmacology, vol. 97, no. 5, pp. 400–406. https://doi.org/10.1139/cjpp-2018-0602 (In English)

Plakhova, V. B., Penniyaynen, V. A., Rogachevskii, I. V. et al. (2020) Dual mechanism of modulation of NaV1.8 sodium channels by ouabain. Canadian Journal of Physiology and Pharmacology, vol. 98, no. 11, pp. 785–802. https://doi.org/10.1139/cjpp-2020-0197 (In English)

Rogachevsky, I. V., Kalinina, A. D., Penniyaynen, V. A. et al. (2021) Vozmozhnyj mekhanizm modulyatsii korotkimi peptidami medlennykh natrievykh kanalov membrany sensornogo nejrona [A possible mechanism of modulation of slow sodium channels in the sensory neuron membrane by short peptides]. Biofizika — Biophysics, vol. 66, no. 4, pp. 684–695. https://doi.org/10.31857/S0006302921040074 (In Russian)

Rogachevskii, I. V., Plakhova, V. B., Penniyaynen, V. A. et al. (2022) New approaches to the design of analgesic medicinal substances. Canadian Journal of Physiology and Pharmacology, vol. 100, no. 1, pp. 43–52. https://doi.org/10.1139/cjpp-2021-0286 (In English)

Timoshchuk, K. I., Khalisov, M. M., Penniyaynen, V. A. et al. (2019) Issledovanie mekhanicheskikh kharakteristik nativnykh fibroblastov s pomoshch’yu atomno-silovogo mikroskopa [Investigation of mechanical characteristics of native fibroblasts using an atomic force microscope]. Pis’ma v zhurnal tekhnicheskoj fiziki, vol. 45, no. 18, pp. 44–47. https://doi.org/10.21883/PJTF.2019.18.48238.17878 (In Russian)

Sneddon, I. N. (1965) The relation between load and penetration in the axi-symmetric boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, vol. 3, no. 1, pp. 47–57. https://doi.org/10.1016/0020-7225(65)90019-4 (In English)

Published

2022-06-30

Issue

Section

Experimental articles