Impact of electromagnetic fields changes on food and cognitive behaviour of the honeybee

Authors

DOI:

https://doi.org/10.33910/2687-1270-2020-1-3-231-241

Keywords:

honeybee, electromagnetic fields, short-term memory, long-term memory

Abstract

Progress in the field of information technology and global wireless communications leads to changes in the natural electromagnetic background of the Earth and affects living organisms. Therefore, it is relevant to investigate the influence of technogenic and natural electromagnetic fields using model biological objects, including a honeybee, which is particularly sensitive to electromagnetic radiation (EMR). Current EMR protection systems that change the characteristics of electromagnetic radiation can also cause specific magneto-biological reactions in living systems. In this study we used the honeybee (Apis mellifera L.) to assess the effect of devices on the innate and cognitive components of the honeybee behavior. The devices included EMR resonators working in isolation and together with a WiFi router. We also changed (weakened/enhanced) the magnetic field relative to the Earth’s magnetic field at the experiment location. The experiments found that all the factors under study, except for the enhanced magnetic field that produced a stimulating effect, have an inhibitory effect on the memory formation. Besides, both weakening and enhancement of the magnetic field significantly inhibits long-term memory. The observed changes in memory formation will inevitably affect the flight patterns and food-finding mechanisms in bees and, in general, the productivity of honeybee colonies.

References

СПИСОК ЛИТЕРАТУРЫ

Бучаченко, А. Л. (2014) Магнитно-зависимые молекулярные и химические процессы в биохимии, генетике и медицине. Успехи химии, т. 83, № 1, с. 1–12.

Дюжикова, Н. А., Копыльцов, А. В., Коршунов, К. А. и др. (2018) Действие электромагнитного излучения высокой частоты и влияние резонаторов-преобразователей на частоту хромосомных аберраций в клетках костного мозга самцов крыс линии Вистар. Электромагнитные волны и электронные системы, т. 23, № 1, с. 12–18.

Еськов, Е. К. (2018) Статическое электричество в пространственной ориентации и сигнализации медоносной пчелы. Биофизика, т. 63, вып. 3, с. 561–566.

Копыльцов, А. В., Серов, И. Н., Лукьянов, Г. Н. (2007) Математическое моделирование взаимодействия электромагнитного излучения с кремниевой самоаффинной поверхностью. Вестник ИНЖЭКОНа. Серия: Технические науки, т. 19, № 6, c. 199–205.

Леднев, В. В., Белова, Н. А., Ермаков, А. М. и др. (2008) Регуляция вариабельности сердечного ритма человека с помощью крайне слабых переменных магнитных полей. Биофизика, т. 53, вып. 6, c. 1129–1137.

Лопатина, Н. Г., Зачепило, Т. Г., Дюжикова, Н. А., Серов, И. Н. (2017) Влияние электромагнитного излучения на ассоциативное обучение медоносной пчелы Apis mellifera L. В кн.: А. В. Баркалов (ред.). Материалы XV Съезда Русского энтомологического общества. Новосибирск: Гарамонд, c. 297–298.

Лопатина, Н. Г., Зачепило, Т. Г., Камышев, Н. Г. (2018) Опасны ли электромагнитные излучения для пчел? Пчеловодство, № 8, с. 12–15.

Лопатина, Н. Г., Зачепило, Т. Г., Камышев, Н. Г. и др. (2019) Влияние неионизирующего электромагнитного излучения на поведение медоносной пчелы Apis mellifera L. (Hymenoptera, Apidae). Энтомологическое обозрение, т. 98, № 1, с. 35–43. DOI: 10.1134/S0367144519010039

Никитина, Е. А., Медведева, А. В., Герасименко, М. С. и др. (2017) Ослабленное магнитное поле Земли: влияние на транскрипционную активность генома, обучение и память у Dr. melanogaster. Журнал высшей нервной деятельности им. И. П. Павлова, т. 67, № 2, с. 246–256. DOI: 10.7868/S0044467717020101

Никитина, Е. А., Медведева, А., Долгая, Ю. Ф. и др. (2013) Особенности пространственной организации хроматина у полиморфных вариантов локуса agnostic дрозофилы — модели геномных заболеваний человека. В кн.: Здоровье — основа человеческого потенциала: проблемы и пути их решения. Т. 8. Труды VIII Всероссийской научно-практической конференции с международным участием. 21–23 ноября 2013 г. Ч. 2. СПб.: б. и., с. 977–982.

Серов, И. Н., Копыльцов, А. В., Лукьянов, Г. Н. (2006) Взаимодействие полупроводниковой пластины с самоаффинным рельефом поверхности с электромагнитным излучением. Нанотехника, № 4 (8), c. 44–49.

Холодов, Ю. А., Лебедева, Н. Н. (1992) Реакции нервной системы человека на электромагнитные поля. М.: Наука, 135 с.

Bernard, O. (2007) Lim kinases, regulators of actin dynamics. The International Journal of Biochemistry & Cell Biology, vol. 39, no. 6, pp. 1071–1076. PMID: 17188549. DOI: 10.1016/j.biocel.2006.11.011

Bitterman, M. E., Menzel, R., Fietz, A., Schafer, S. (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). Journal of Comparative Psychology, vol. 97, no. 2, pp. 107–119. PMID: 6872507.

Cammaerts, M.-C, De Doncker, P., Patris, X. et al. (2012) GSM 900 MHz radiation inhibits ants’ association between food sites and encountered cues. Electromagnetic Biology and Medicine, vol. 31, no. 2, pp. 151–165. PMID: 22268919. DOI: 10.3109/15368378.2011.624661

Cook, C. M., Saucier, D. M., Thomas, A., Prato, F. (2006) Exposure to ELF magnetic and ELF-modulated radiofrequency fields: The time course of physiological and cognitive effects observed in recent studies (2001–2005). Bioelectromagnetics, vol. 27, no. 8, pp. 613–627. PMID: 16724317. DOI: 10.1002/bem.20247

Cucurachi, S., Tamis, W. L., Vijver, M. G. et al. (2013) A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environment International, vol. 51, pp. 116–140. PMID: 23261519. DOI: 10.1016/j.envint.2012.10.009

Greggers, U., Koch, G., Schmidt, V. et al. (2013) Reception and learning of electric fields in bees. Proceedings of the Royal Society B: Biological Sciences, vol. 280, no. 1759, article 20130528. PMID: 23536603. DOI: 10.1098/rspb.2013.0528

El Halabi, N., Achkar, R., Haidar, G. A. (2013) The effect of cell phone radiations on the life cycle of honeybees. In: Eurocon 2013. S. l.: IEEE, pp. 529–536. DOI: 10.1109/EUROCON.2013.6625032

Jasaitis, D., Vasiliauskienė, V., Miškinis, P. et al. (2018) Investigation of the circle fractal structure interaction with gigahertz frequency electromagnetic waves. In: L. T. Koczy, D. Žostautienė, O. Strikulienė, E. Zacharovienė (eds.). Proceedings of the 12th International Scientific Conference Intelligent Technologies in Logistics and Mechatronies Systems (ITELMS’2018). April 26–27, 2018. Panevėžys, Lithuania. Bologna: Editografica, pp. 81–87.

Kumar, N. R., Sangwan, S., Badotra, P. (2011) Exposure to cell phone radiations produces biochemical changes in worker honey bees. Toxicology International, vol. 18, no. 1, pp. 70–72. PMID: 21430927. DOI: 10.4103/0971-6580.75869

Lisman, J. (2017) Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: Long-term potentiation, long-term depression, short-term potentiation and scaling. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol. 372, no. 1715, article 20160260. PMID: 28093558. DOI: 10.1098/rstb.2016.0260

Manta, A. K., Papadopoulou, D., Polyzos, A. P. et al. ( 2017) Mobile-phone radiation-induced perturbation of geneexpression profiling, redox equilibrium and sporadic-apoptosis control in the ovary of Drosophila melanogaster. Fly, vol. 11, no. 2, pp. 75–95. DOI: 10.1080/19336934.2016.1270487

Menzel, R. (1999) Memory dynamics in the honeybee. Journal of Comparative Physiology A, vol. 185, no. 4, pp. 323–340. DOI: 10.1007/s003590050392

Saliev, T., Begimbetova, D., Masoud, A.-R., Matkarimov, B. (2018) Biological effects of non-ionizing electromagnetic fields: Two sides of a coin. Progress in Biophysics and Molecular Biology, vol. 141, pp. 25–36. PMID: 30030071. DOI: 10.1016/ j.pbiomolbio.2018.07.009

Sheppard, D. M. W., Li, J., Henbest, K. B. et al. (2017) Millitesla magnetic field effects on the photocycle of an animal cryptochrome. Scientific Reports, vol. 7, article 42228. PMID: 28176875. DOI: 10.1038/srep42228

Shepherd, S., Lima, M. A. P., Oliveira, E. E. et al. (2018) Extremely low frequency electromagnetic fields impair the cognitive and motor abilities of honey bees. Scientific Reports, vol. 8, no. 1, article 7932. PMID: 29785039. DOI: 10.1038/s41598-018-26185-y

Shepherd, S., Hollands, G., Godley, V. C. et al. (2019) Increased aggression and reduced aversive learning in honey bees exposed to extremely low frequency electromagnetic fields. PLoS One, vol. 14, no. 10, article e0223614. DOI: 10.1371/journal.pone.0223614

Thielens, A., Bell, D., Mortimore, D. B. et al. (2018) Exposure of insects to radio-frequency electromagnetic fields from 2 to 120 GHz. Scientific Reports, vol. 8, no. 1, article 3924. PMID: 29500425. DOI: 10.1038/s41598-018-22271-3

Valkova, T., Vacha, M. (2012) How do honeybees use their magnetic compass? Can they see the North? Bulletin of Entomological Research, vol. 102, no. 4, pp. 461–467. PMID: 22313997. DOI: 10.1017/S0007485311000824

van Rongen, E., Croft, R., Juutilainen, J. et al. (2009) Effects of radiofrequency electromagnetic fields on the human nervous system. Journal of Toxicology and Environmental Health, vol. 12, no. 8, pp. 572–597. PMID: 20183535. DOI: 10.1080/10937400903458940

Wyszkowska, J., Shepherd, S., Sharkh, S. et al. (2016) Exposure to extremely low frequency electromagnetic fields alters the behaviour, physiology and stress protein levels of desert locusts. Scientific Reports, vol. 6, article 36413. PMID: 27808167. DOI: 10.1038/srep42228

Zhang, Z.-Y., Zhang, J., Yang, C.-J. et al. (2016) Coupling mechanism of electromagnetic field and thermal stress on Drosophila melanogaster. PLoS One, vol. 11, no. 9, article e0162675. PMID: 27611438. DOI: 10.1371/journal.pone.0162675

REFERENCES

Bernard, O. (2007) Lim kinases, regulators of actin dynamics. The International Journal of Biochemistry & Cell Biology, vol. 39, no. 6, pp. 1071–1076. PMID: 17188549. DOI: 10.1016/j.biocel.2006.11.011 (In English)

Bitterman, M. E., Menzel, R., Fietz, A., Schafer, S. (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). Journal of Comparative Psychology, vol. 97, no. 2, pp. 107–119. PMID: 6872507. (In English)

Buchachenko, A. L. (2014) Magnito-zavisimye molekulyarnye i khimicheskie protsessy v biokhimii, genetike i meditsine [Magnetic field-dependent molecular and chemical processes in biochemistry, genetics and medicine]. Uspekhi khimii, vol. 83, no. 1, pp. 1–12. (In Russian)

Cammaerts, M.-C, De Doncker, P., Patris, X. et al. (2012) GSM 900 MHz radiation inhibits ants’ association between food sites and encountered cues. Electromagnetic Biology and Medicine, vol. 31, no. 2, pp. 151–165. PMID: 22268919. DOI: 10.3109/15368378.2011.624661 (In English)

Cook, C. M., Saucier, D. M., Thomas, A., Prato, F. (2006) Exposure to ELF magnetic and ELF-modulated radiofrequency fields: The time course of physiological and cognitive effects observed in recent studies (2001–2005). Bioelectromagnetics, vol. 27, no. 8, pp. 613–627. PMID: 16724317. DOI: 10.1002/bem.20247 (In English)

Cucurachi, S., Tamis, W. L., Vijver, M. G. et al. (2013) A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environment International, vol. 51, pp. 116–140. PMID: 23261519. DOI: 10.1016/j.envint.2012.10.009 (In English)

Dyuzhikova, N. A., Kopyltsov, A. V., Korshunov, К. A. et al. (2018) Dejstvie elektromagnitnogo izlucheniya vysokoj chastoty i vliyanie rezonatorov-preobrazovatelej na chastotu khromosomnykh aberratsij v kletkakh kostnogo mozga samtsov krys linii Wistar [The effect of high-frequency electromagnetic radiation and the effect of resonator-convertors on the frequency of chromosomal aberrations in the bone marrow cells of male Wistar rats]. Elektromagnitnye volny i elektronnye sistemy — Electromagnetic Waves and Electronic Systems, vol. 23, no. 1, pp. 12–18. (In Russian)

El Halabi, N., Achkar, R., Haidar, G. A. (2013) The effect of cell phone radiations on the life cycle of honeybees. In: Eurocon 2013. S. l.: IEEE, pp. 529–536. DOI: 10.1109/EUROCON.2013.6625032 (In English)

Eskov, E. K. (2018) Staticheskoe elektrichestvo v prostranstvennoj orientatsii i signalizatsii medonosnoj pchely [Static electricity in the spatial orientation and signaling of honey bees]. Biofizika — Biophysics, vol. 63, no. 3, pp. 561–566. (In Russian)

Greggers, U., Koch, G., Schmidt, V. et al. (2013) Reception and learning of electric fields in bees. Proceedings of the Royal Society B: Biological Sciences, vol. 280, no. 1759, article 20130528. PMID: 23536603. DOI: 10.1098/rspb.2013.0528 (In English)

Jasaitis, D., Vasiliauskienė, V., Miškinis, P. et al. (2018) Investigation of the circle fractal structure interaction with gigahertz frequency electromagnetic waves. In: L. T. Koczy, D. Žostautienė, O. Strikulienė, E. Zacharovienė (eds.). Proceedings of the 12th International Scientific Conference Intelligent Technologies in Logistics and Mechatronies Systems (ITELMS’2018). April 26–27, 2018. Panevėžys, Lithuania. Bologna: Editografica, pp. 81–87. (In English)

Kholodov, Yu. A., Lebedeva, N. N. (1992) Reaktsii nervnoj sistemy cheloveka na elektromagnitnye polya [Reactions of the human nervous system to electromagnetic fields]. Moscow: Nauka Publ., 135 p. (In Russian)

Kopy’l’tsov, A. V., Serov, I. N., Luk’yanov, G. N. (2007) Matematicheskoe modelirovanie vzaimodejstviya elektromagnitnogo izlucheniya s kremnievoj samoaffinnoj poverkhnost’yu [Mathematical modelling of the interaction of a ring structured surface with high-frequency electromagnetic radiation]. Vestnik INZhEKONa. Seriya: Tekhnicheskie nauki, vol. 19, no. 6, pp. 199–205. (In Russian)

Kumar, N. R., Sangwan, S., Badotra, P. (2011) Exposure to cell phone radiations produces biochemical changes in worker honey bees. Toxicology International, vol. 18, no. 1, pp. 70–72. PMID: 21430927. DOI: 10.4103/0971-6580.75869 (In English)

Lednev, V. V., Belova, N. A., Ermakov, A. M. et al. (2008) Regulyatsiya variabel’nosti serdechnogo ritma cheloveka s pomoshchyu krajne slabykh peremennykh magnitnykh polej [Modulation of cardiac rhythm in the humans exposed to extremely weak alternating magnetic fields]. Biofizika — Biophysics, vol. 53, no. 6, pp. 1129–1137. (In Russian)

Lisman, J. (2017) Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: Long-term potentiation, long-term depression, short-term potentiation and scaling. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol. 372, no. 1715, article 20160260. PMID: 28093558. DOI: 10.1098/rstb.2016.0260 (In English)

Lopatina, N. G., Zachepilo, T. G., Dyuzhikova, N. A., Serov, I. N. (2017) Vliyanie elektromagnitnogo izlucheniya na assotsiativnoe obuchenie medonosnoj pchely Apis mellifera L. [Influence of electromagnetic radiation on associative learning honey bee Apis mellifera L.]. In: A. V. Barkalov (ed.). Materialy XV S’ezda Russkogo entomologicheskogo obshchestva [Proceedings of XV Congress of the Russian Entomological Society]. Novosibirsk: Garamond Publ., pp. 297–298. (In Russian)

Lopatina, N. G., Zachepilo, T. G., Kamyshev, N. G. (2018) Opasny li elektromagnitnye izlucheniya dlya pchel? [Is electromagnetic radiation dangerous to honeybees?]. Pchelovodstvo, vol. 8, pp. 12–15. (In Russian)

Lopatina, N. G., Zachepilo, T. G., Kamyshev, N. G. et al. (2019) Vliyaniye neioniziruyushego elektromagnitnogo izlucheniya na povedeniye medonosnoy pchely Apis mellifera L. (Hymenoptera, Apidae) [Influence of nonionizing electromagnetic radiation on the behavior of the honey bee Apis mellifera L. (Hymenoptera, Apidae)]. Entomologicheskoye obosrenie, vol. 98, no. 1, pp. 35–43. DOI: 10.1134/S0367144519010039 (In Russian)

Manta, A. K., Papadopoulou, D., Polyzos, A. P. et al. ( 2017) Mobile-phone radiation-induced perturbation of geneexpression profiling, redox equilibrium and sporadic-apoptosis control in the ovary of Drosophila melanogaster. Fly, vol. 11, no. 2, pp. 75–95. DOI: 10.1080/19336934.2016.1270487 (In English)

Menzel, R. (1999) Memory dynamics in the honeybee. Journal of Comparative Physiology A, vol. 185, no. 4, pp. 323–340. DOI: 10.1007/s003590050392 (In English)

Nikitina, E. A, Medvedeva, A. V., Gerasimenko, M. S. et al. (2017) Oslablennoe magnitnoe pole Zemli: vliyanie na transkriptsionnuyu aktivnost’ genoma, obuchenie i pamyat’ u Dr. melanogaster [Weakened geomagnetic field: Impact on transcriptional activity of the genome, learning and memory formation in Dr. melanogaster]. Zhurnal vysshej nervnoj deyatel’nosti im. I. P. Pavlova — I. P. Pavlov Journal of Higher Nervous Activity, vol. 67, no. 2, pp. 246–256. DOI: 10.7868/S0044467717020101 (In Russian)

Nikitina, E. A., Medvedeva, A., Dolgaya, Yu. F. et al. (2013) Osobennosty prostranstvennoj organizatsii khromatina u polimorfnykh variantov lokusa agnostic drozofily — modeli genomnykh zabolevanij cheloveka [Chromatin organization of drosophila agnostic locus polymorphic variants — the models of human genomic diseases]. In: Zdorov’e — osnova chelovecheskogo potentsiala: problemy i puti ikh resheniya. T. 8. Trudy VIII Vserossijskoj nauchno-prakticheskoj konferentsii s mezhdunarodnym uchastiem. 21–23 noyabrya 2013 g. [Health — the base of human potential: Problems and ways to solve them. Vol. 8. Proceedings of the 8th All–Russian research and practical conference with international participation. 21–23 November]. Pt 2. Saint Petersburg: s. n., pp. 977–982. (In Russian)

Saliev, T., Begimbetova, D., Masoud, A.-R., Matkarimov, B. (2018) Biological effects of non-ionizing electromagnetic fields: Two sides of a coin. Progress in Biophysics and Molecular Biology, vol. 141, pp. 25–36. PMID: 30030071. DOI: 10.1016/ j.pbiomolbio.2018.07.009 (In English)

Serov, I. N., Kopyl’tsov, A. V., Luk’yanov, G. N. (2006) Vzaimodejstvie poluprovodnikovoj plastiny s samoaffinnym rel’efom poverkhnosti s elektromagnitnym izlucheniem [Interaction of a semiconductor plate with a self-affine surface topography with electromagnetic radiation]. Nanotekhnika — Nanotechnics, no. 4 (8), pp. 44–49. (In Russian)

Shepherd, S., Hollands, G., Godley, V. C. et al. (2019) Increased aggression and reduced aversive learning in honey bees exposed to extremely low frequency electromagnetic fields. PLoS One, vol. 14, no. 10, article e0223614. DOI: 10.1371/journal.pone.0223614 (In English)

Shepherd, S., Lima, M. A. P., Oliveira, E. E. et al. (2018) Extremely low frequency electromagnetic fields impair the cognitive and motor abilities of honey bees. Scientific Reports, vol. 8, no. 1, article 7932. PMID: 29785039. DOI: 10.1038/s41598-018-26185-y (In English)

Sheppard, D. M. W., Li, J., Henbest, K. B. et al. (2017) Millitesla magnetic field effects on the photocycle of an animal cryptochrome. Scientific Reports, vol. 7, article 42228. PMID: 28176875. DOI: 10.1038/srep42228 (In English)

Thielens, A., Bell, D., Mortimore, D. B. et al. (2018) Exposure of insects to radio-frequency electromagnetic fields from 2 to 120 GHz. Scientific Reports, vol. 8, no. 1, article 3924. PMID: 29500425. DOI: 10.1038/s41598-018-22271-3 (In English)

Valkova, T., Vacha, M. (2012) How do honeybees use their magnetic compass? Can they see the North? Bulletin of Entomological Research, vol. 102, no. 4, pp. 461–467. PMID: 22313997. DOI: 10.1017/S0007485311000824 (In English)

van Rongen, E., Croft, R., Juutilainen, J. et al. (2009) Effects of radiofrequency electromagnetic fields on the human nervous system. Journal of Toxicology and Environmental Health, vol. 12, no. 8, pp. 572–597. PMID: 20183535. DOI: 10.1080/10937400903458940 (In English)

Wyszkowska, J., Shepherd, S., Sharkh, S. et al. (2016) Exposure to extremely low frequency electromagnetic fields alters the behaviour, physiology and stress protein levels of desert locusts. Scientific Reports, vol. 6, article 36413. PMID: 27808167. DOI: 10.1038/srep42228 (In English)

Zhang, Z.-Y., Zhang, J., Yang, C.-J. et al. (2016) Coupling mechanism of electromagnetic field and thermal stress on Drosophila melanogaster. PLoS One, vol. 11, no. 9, article e0162675. PMID: 27611438. DOI: 10.1371/journal.pone.0162675 (In English)

Published

2020-09-30

Issue

Section

Experimental articles