Cellular tissue regeneration: Effects of magnetic fields of different intensity and synthetic oligopeptides

Authors

DOI:

https://doi.org/10.33910/2687-1270-2022-3-2-254-264

Keywords:

magnetic field, different genesis tissues, proliferation, cellular differentiation, oligopeptides

Abstract

The Earth’s magnetic field is subject to continuous changes. It has also been shown to induce effect on the vital activities of all living organisms. These factors make the study of magneto-biological effects important and highly relevant. From the biological point of view, weak magnetic fields, especially weak static magnetic fields, are among the most poorly understood, however, they have a noticeable effect on living organisms, including humans. The use of such fields is on the rise, which requires a comprehensive understanding of mechanisms behind their effect on living things. The article investigates the effect of weak static magnetic fields amplified and weakened relative to the Earth’s magnetic field on cellular tissue regeneration. It has been shown that one of the main cellular processes—proliferation—increases when the cells are exposed to enhanced or depressed static magnetic fields. The greatest effect of such exposure is observed in mesodermal tissue, i. e., the myocardium, vessels, and muscles. The effect of tissue-specific oligopeptides on cellular proliferation is comparable to that of static magnetic fields: the stimulation of cellular regeneration occurs primarily in the myocardium, muscles, and vessels. A special focus is given to the therapeutic potential of weak magnetic fields and their interaction with clinical drugs in various pathologies.

References

ЛИТЕРАТУРА

Бучаченко, А. Л. (2014) Магнитно-зависимые молекулярные и химические процессы в биохимии, генетике и медицине. Успехи химии, т. 83, № 1, с. 1–12. https://doi.org/10.1070/RC2014v083n01ABEH004335

Иванова, П. Н., Заломаева, Е. С., Сурма, С. В. и др. (2021) Влияние ослабленного магнитного поля Земли на органотипическую культуру тканей различного генеза. Молекулярная медицина, т. 19, № 4, с. 47–51. https://doi.org/10.29296/24999490-2021-04-08

Мамон, Л. А., Бондаренко, Л. В., Третьякова, И. В. и др. (1999) Последствия клеточного стресса при нарушенном синтезе белков теплового шока у дрозофилы. Вестник Санкт-Петербургского университета. Серия 3. Биология, т. 4, № 24, с. 94–107.

Основина, И. П., Алексеева, Н. В., Иванов, А. В., Секирин, А.Б. (2019) Оценка эффективности применения магнитофореза трансдермальной формы диклофенака у пациентов с остеоартритом коленного сустава. Вопросы курортологии, физиотерапии и лечебной физической культуры, т. 96, № 5, с. 36–43. https://doi.org/10.17116/kurort20199605136

Хавинсон, В. Х. (2020) Лекарственные пептидные препараты: прошлое, настоящее, будущее. Клиническая медицина, т. 98, № 3, с. 165–177. https://doi.org/10.30629/0023-2149-2020-98-3-165-177

Чалисова, Н. И., Никитина, Е. А., Александрова, М. Л., Золотоверхая, Е. А. (2021) Влияние кодируемых L-аминокислот на органотипическую культуру тканей различного генеза. Интегративная физиология, т. 2, № 2, с. 196–204. https://doi.org/10.33910/2687-1270-2021-2-2-196-204

Bialy, D., Wawrzynska, M., Bil-Lula, I. et al. (2018) Low frequency electromagnetic field decreases ischemia-reperfusion injury of human cardiomyocytes and supports their metabolic function. Experimental Biology and Medicine, vol. 243, no. 10, pp. 809–816. https://doi.org/10.1177%2F1535370218779773

Binhi, V. N., Prato, F. S. (2017) Biological effects of the hypomagnetic field: An analytical review of experiments and theories. PLOS One, vol. 12, no. 6, article e0179340. https://doi.org/10.1371/journal.pone.0179340

Binhi, V. N., Rubin, A. B. (2022) Theoretical concepts in magnetobiology after 40 years of research. Cells, vol. 11, no. 2, article 274. https://doi.org/10.3390/cells11020274

Burleson, K. O., Schwartz, G. E. (2005) Cardiac torsion and electromagnetic fields: The cardiac bioinformation hypothesis. Medical Hypotheses, vol. 64, no. 6, pp. 1109–1116. https://doi.org/10.1016/j.mehy.2004.12.023

Elmas, O. (2016) Effects of electromagnetic field exposure on the heart: A systematic review. Toxicology and Industrial Health, vol. 32, no. 1, pp. 76–82. https://doi.org/10.1177/0748233713498444

Feychting, M. (2005) Health effects of static magnetic fields—a review of the epidemiological evidence. Progress in Biophysics and Molecular Biology, vol. 87, no. 2–3, pp. 241–246. https://doi.org/10.1016/j.pbiomolbio.2004.08.007

Glassmeier, K.-H., Soffel, H., Negendank, J. F. W. (2009) Geomagnetic Field Variations. Berlin: Springer-Verlag, рр. 107–158.

Guerriero, F., Ricevuti, G. (2016) Extremely low frequency electromagnetic fields stimulation modulates autoimmunity and immune responses: A possible immuno-modulatory therapeutic effect in neurodegenerative diseases. Neural Regeneration Research, vol. 11, no. 12, pp. 1888–1895. https://doi.org/10.4103/1673-5374.195277

Ivanova, P. N., Surma, S. V., Shchegolev, B. F. et al. (2018) The effects of weak static magnetic field on the development of organotypic tissue culture in rats. Doklady Biological Sciences, vol. 481, no. 4, pp. 132–134. https://doi.org/10.1134/s0012496618040075

Jalilian, H., Najafi, K., Reza, M. et al. (2017) Assessment of static and extremely low-frequency magnetic fields in the electric-powered trains. International Journal of Occupational Hygiene, vol. 9, no. 2, pp. 105–112.

Karabetsos, E., Kalampaliki, E., Koutounidis, D. (2014) Testing hybrid technology cars: Static and extremely low-frequency magnetic field measurements. IEEE Vehicular Technology Magazine, vol. 9, no. 4, pp. 34–39. https://doi.org/10.1109/MVT.2014.2360651

Mattsson, M. O., Simko, M. (2019) Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz. Medical Devices: Evidence and Research, vol. 12, pp. 347–368. https://doi.org/10.2147/mder.s214152

Nikitina, Е. А., Мedvedeva, A. V., Gerasimenko, M. S. et al. (2018) Weakened geomagnetic field: Effects on genomic transcriptional activity, learning, and memory in Drosophila Melanogaster. Neuroscience and Behavioral Physiology, vol. 48, no. 7, pp. 796–803. https://www.doi.org/10.1007/s11055-018-0632-2

Sandyk, R. (1994) Alzheimer’s disease: Improvement of visual memory and visuoconstructive performance by treatment with picotesla range magnetic fields. International Journal of Neuroscience, vol. 76, no. 3–4, pp. 185–225. https://doi.org/10.3109/00207459408986003

Sandyk, R. (1995) Long term beneficial effects of weak electromagnetic fields in multiple sclerosis. International Journal of Neuroscience, vol. 83, no. 1–2, pp. 45–57. https://doi.org/10.3109/00207459508986324

Sandyk, R., Anninos, P. A., Tsagas, N., Derpapas, K. (1992) Magnetic fields in the treatment of Parkinson’s disease. International Journal of Neuroscience, vol. 63, no. 1–2, pp. 141–150. https://doi.org/10.3109/00207459208986664

Tenuzzo, B., Chionna, A., Panzarini, E. et al. (2006) Biological effects of 6 mT static magnetic fields: A comparative study in different cell types. Bioelectromagnetics, vol. 27, no. 7, pp. 560–577. https://doi.org/10.1002/bem.20252

Vadala, M., Vallelunga, A., Palmieri, L. et al. (2015) Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson’s disease. Behavioral and Brain Functions, vol. 11, no. 1, article 26. https://doi.org/10.1186%2Fs12993-015-0070-z

Zalomaeva, E. S., Ivanova, P. N., Chalisova, N. I. et al. (2020) Effects of weak static magnetic field and oligopeptides on cell proliferation and cognitive functions in different animal species. Technical Physics, vol. 65, no. 10, pp. 1585–1590. https://doi.org/10.1134/S1063784220100254

Zhang, Z., Xue, Y., Yang, J. et al. (2021) Biological effects of hypomagnetic field: Ground-based data for space exploration. Bioelectromagnetics, vol. 42, no. 6, pp. 516–531. https://doi.org/10.1002/bem.22360

REFERENCES

Bialy, D., Wawrzynska, M., Bil-Lula, I. et al. (2018) Low frequency electromagnetic field decreases ischemia-reperfusion injury of human cardiomyocytes and supports their metabolic function. Experimental Biology and Medicine, vol. 243, no. 10, pp. 809–816. https://doi.org/10.1177%2F1535370218779773 (In English)

Binhi, V. N., Prato, F. S. (2017) Biological effects of the hypomagnetic field: An analytical review of experiments and theories. PLOS One, vol. 12, no. 6, article e0179340. https://doi.org/10.1371/journal.pone.0179340 (In English)

Binhi, V. N., Rubin, A. B. (2022) Theoretical concepts in magnetobiology after 40 years of research. Cells, vol. 11, no. 2, article 274. https://doi.org/10.3390/cells11020274 (In English)

Buchachenko, A. L. (2014) Magnitno-zavisimye molekulyarnye i khimicheskie protsessy v biokhimii, genetike i meditsine [Magnetic field-dependent molecular and chemical processes in biochemistry, genetics and medicine]. Uspekhi khimii — Russian Chemical Reviews, vol. 83, no. 1, pp. 1–12. https://doi.org/10.1070/RC2014v083n01ABEH004335 (In Russian)

Burleson, K. O., Schwartz, G. E. (2005) Cardiac torsion and electromagnetic fields: The cardiac bioinformation hypothesis. Medical Hypotheses, vol. 64, no. 6, pp. 1109–1116. https://doi.org/10.1016/j.mehy.2004.12.023 (In English)

Chalisova, N. I., Nikitina, E. A., Alexandrova, M. L., Zolotoverkhaja, E. A. (2021) Vliyanie kodiruemykh L-aminokislot na organotipicheskuyu kul’turu tkanej razlichnogo geneza [The effect of coded L-amino acids on the organotypic culture of tissues of different genesis]. Integrativnaya fiziologiya — Integrative Physiology, vol. 2, no. 2, pp. 196–204. https://doi.org/10.33910/2687-1270-2021-2-2-196-204 (In Russian)

Elmas, O. (2016) Effects of electromagnetic field exposure on the heart: A systematic review. Toxicology and Industrial Health, vol. 32, no. 1, pp. 76–82. https://doi.org/10.1177/0748233713498444 (In English)

Feychting, M. (2005) Health effects of static magnetic fields—a review of the epidemiological evidence. Progress in Biophysics and Molecular Biology, vol. 87, no. 2–3, pp. 241–246. https://doi.org/10.1016/j.pbiomolbio.2004.08.007 (In English)

Glassmeier, K.-H., Soffel, H., Negendank, J. F. W. (2009) Geomagnetic Field Variations. Berlin: Springer-Verlag, рр. 107–158. (In English)

Guerriero, F., Ricevuti, G. (2016) Extremely low frequency electromagnetic fields stimulation modulates autoimmunity and immune responses: A possible immuno-modulatory therapeutic effect in neurodegenerative diseases. Neural Regeneration Research, vol. 11, no. 12, pp. 1888–1895. https://doi.org/10.4103/1673-5374.195277 (In English)

Ivanova, P. N., Surma, S. V., Shchegolev, B. F. et al. (2018) The effects of weak static magnetic field on the development of organotypic tissue culture in rats. Doklady Biological Sciences, vol. 481, no. 4, pp. 132–134. https://doi.org/10.1134/s0012496618040075 (In English)

Ivanova, P. N., Zalomaeva, E. S., Surma, S. V. et al. (2021) Vliyanie oslablennogo magnitnogo polya Zemli na organotiptcheskuyu kul’turu tkanej razlichnogo geneza [Impact of weakened geomagnetic field on the organotypic cell culture of various genesis]. Molekulyarnaya meditsina — Molecular Medicine, vol. 19, no. 4, pp. 47–51. https://doi.org/10.29296/24999490-2021-04-08 (In Russian)

Jalilian, H., Najafi, K., Reza, M. et al. (2017) Assessment of static and extremely low-frequency magnetic fields in the electric-powered trains. International Journal of Occupational Hygiene, vol. 9, no. 2, pp. 105–112. (In English)

Karabetsos, E., Kalampaliki, E., Koutounidis, D. (2014) Testing hybrid technology cars: Static and extremely low-frequency magnetic field measurements. IEEE Vehicular Technology Magazine, vol. 9, no. 4, pp. 34–39. https://doi.org/10.1109/MVT.2014.2360651 (In English)

Khavinson, V. K. (2020) Lekarstvennye peptidnye preperaty: proshloe, nastoyashchee, budushchee [Peptide medicines: Past, present, future]. Klinicheskaya meditsina — Clinical Medicine, vol. 98, no. 3, pp. 165–177. https://doi.org/10.30629/0023-2149-2020-98-3-165-177 (In Russian)

Mamon, L. A., Bondarenko, L. V., Tretyakova, I. V. et al. (1999) Posledstviya kletochnogo stressa pri narushennom sinteze belkov teplovogo shoka u drozofily [Consequences of cell stress in conditions of disturbed synthesis of heat shock proteins in Drosophila melanogaster]. Vestnik Sankt-Peterburgskogo universiteta. Seriya 3. Biologiya — Vestnik of Saint Petersburg University. Series 3. Biology, vol. 4, no. 24, pp. 94–107. (In Russian)

Mattsson, M. O., Simko, M. (2019) Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz. Medical Devices: Evidence and Research, vol. 12, pp. 347–368. https://doi.org/10.2147/mder.s214152 (In English)

Nikitina, Е. А., Мedvedeva, A. V., Gerasimenko, M. S. et al. (2018) Weakened geomagnetic field: Effects on genomic transcriptional activity, learning, and memory in Drosophila Melanogaster. Neuroscience and Behavioral Physiology, vol. 48, no. 7, pp. 796–803. https://www.doi.org/10.1007/s11055-018-0632-2 (In English)

Osnovina, I. P., Alekseeva, N. V., Ivanov, A. V., Sekirin, A. B. (2019) Otsenka effektivnosti primeneniya magnitoforeza transdermal’noj formy diklofenaka u patsientov s osteoartritom kolennogo sustava [Evaluation of the efficiency of magnetophoresis transdermal diclofenac delivery in patients with knee osteoarthritis]. Voprosy kurortologii, fizioterapii i lechebnoj fizicheskoj kul’tury — Problems of Balneology, Physiotherapy, and Exercise Therapy, vol. 96, no. 5, pp. 36–43. https://doi.org/10.17116/kurort20199605136 (In Russian)

Sandyk, R. (1994) Alzheimer’s disease: Improvement of visual memory and visuoconstructive performance by treatment with picotesla range magnetic fields. International Journal of Neuroscience, vol. 76, no. 3–4, pp. 185–225. https://doi.org/10.3109/00207459408986003 (In English)

Sandyk, R. (1995) Long term beneficial effects of weak electromagnetic fields in multiple sclerosis. International Journal of Neuroscience, vol. 83, no. 1–2, pp. 45–57. https://doi.org/10.3109/00207459508986324 (In English)

Sandyk, R., Anninos, P. A., Tsagas, N., Derpapas, K. (1992) Magnetic fields in the treatment of Parkinson’s disease. International Journal of Neuroscience, vol. 63, no. 1–2, pp. 141–150. https://doi.org/10.3109/00207459208986664 (In English)

Tenuzzo, B., Chionna, A., Panzarini, E. et al. (2006) Biological effects of 6 mT static magnetic fields: A comparative study in different cell types. Bioelectromagnetics, vol. 27, no. 7, pp. 560–577. https://doi.org/10.1002/bem.20252 (In English)

Vadala, M., Vallelunga, A., Palmieri, L. et al. (2015) Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson’s disease. Behavioral and Brain Functions, vol. 11, no. 1, article 26. https://doi.org/10.1186%2Fs12993-015-0070-z (In English)

Zalomaeva, E. S., Ivanova, P. N., Chalisova, N. I. et al. (2020) Effects of weak static magnetic field and oligopeptides on cell proliferation and cognitive functions in different animal species. Technical Physics, vol. 65, no. 10, pp. 1585–1590. https://doi.org/10.1134/S1063784220100254 (In English)

Zhang, Z., Xue, Y., Yang, J. et al. (2021) Biological effects of hypomagnetic field: Ground-based data for space exploration. Bioelectromagnetics, vol. 42, no. 6, pp. 516–531. https://doi.org/10.1002/bem.22360 (In English)

Published

2022-08-30

Issue

Section

Experimental articles