Improved intravitreal injection procedure in mice with electroretinographic evaluation of results

Authors

  • Ivan S. Romanov Herzen State Pedagogical University of Russia; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
  • Alexander Yu. Rotov Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences https://orcid.org/0000-0002-7903-6262
  • Luba A. Astakhova Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences https://orcid.org/0000-0003-3162-2446
  • Michael L. Firsov Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences https://orcid.org/0000-0001-9395-1160

DOI:

https://doi.org/10.33910/2687-1270-2022-3-2-233-245

Keywords:

intravitreal injection, retina, model animals, electroretinography, eye, vitreous body

Abstract

At the present time vision pathologies affecting the retina are widespread. This prompts the scientific community to conduct research focusing on the methods of treating retinal conditions and their practical application. Injections of therapeutic agents into the vitreous body (intravitreal injections) are being increasingly used both in clinical settings and in research to develop new approaches in treating degenerative and other retinal diseases. The technique of human intravitreal injections is well-developed and sufficiently studied. However, there is also a need to apply intravitreal technique in model animals, in particular, in mice, whose eye is very much different from that of a human. The paper describes the steps we took to improve the technique of intravitreal injections in mice. We assessed the effect of different approaches to intravitreal injection on the retinal function by in vivo electroretinography. As a result, we propose an efficient and safe protocol for the intravitreal administration of various agents into the murine eye. The improved protocol allows to assess the possible adverse effects of the agent itself, rather than induced by injection.

References

Abbas, F., Becker, S., Jones, B. W. et al. (2022) Revival of light signalling in the postmortem mouse and human retina. Nature, vol. 606, no. 7913, pp. 351–357. https://doi.org/10.1038/s41586-022-04709-x (In English)

Bauer, S. M., Voronkova, E. B., Kotliar, K. E. (2021) O povyshenii vnutriglaznogo davleniya posle intravitreal’nykh in’ektsij [On elevation of intraocular pressure after intravitreal injections]. Rossijskij oftal’mologicheskij zhurnal — Russian Ophthalmological Journal, vol. 14, no. 4, pp. 126–129. https://doi.org/10.21516/2072-0076-202114-4-126-129 (In Russian)

Baygildin, S. S., Musina, L. A., Khismatullina, Z. R. (2021) Geneticheskie i indutsirovannye modeli zhivotnykh s degeneratsiej setchatki [Experimental animal models of retinal degeneration]. Biomeditsina — Journal Biomed, vol. 17, no. 1, pp. 70–81. https://doi.org/10.33647/2074-5982-17-1-70-81 (In Russian)

Bubnova, I. A., Kurguzova, A. G. (2018) Izmeneniya urovnya VGD posle intravitreal’nykh in’ektsij [Changes in intraocular pressure after intravitreal injections]. Vestnik Oftalmologii — The Russian Annals of Ophthalmology, vol. 134, no. 4, pp. 47–51. https://doi.org/10.17116/oftalma201813404147 (In Russian)

Campbell, M., Humphries, M. M., Humphries, P. (2012) Barrier modulation in drug delivery to the retina. Methods in Molecular Biology, vol. 935, pp. 371–380. https://doi.org/10.1007/978-1-62703-080-9_26 (In English)

Collin, G. B, Gogna, N., Chang, B. et al. (2020) Mouse models of inherited retinal degeneration with photoreceptor cell loss. Cells, vol. 9, no. 4, article 931. https://doi.org/10.3390/cells9040931 (In English)

Gorantla, S., Rapalli, V. K., Waghule, T. et al. (2020) Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Advances, vol. 10, no. 46, pp. 27835–27855. https://doi.org/10.1039/D0RA04971A (In English)

Goriachenkov, A. A., Rotov, A. Yu., Firsov, M. L. (2021) Developmental dynamics of the functional state of the retina in mice with inherited photoreceptor degeneration. Neuroscience and Behavioral Physiology, vol. 51, no. 6, pp. 807–815. https://doi.org/10.1007/s11055-021-01137-8 (In English)

Hombrebueno, J. R., Luo, C., Guo, L. et al. (2014) Intravitreal injection of normal saline induces retinal degeneration in the C57BL/6J mouse. Translational Vision Science and Technology, vol. 3, no. 2, article 3. https://doi.org/10.1167/tvst.3.2.3 (In English)

Ioshin, I. E. (2017) Bezopasnost’ intravitreal’nykh in’ektsij [Safety of intravitreal injection]. Oftal’mokhirurgiya — Fyodorov Journal of Ophthalmic Surgery, vol. 3, pp. 71–79. https://doi.org/10.25276/0235-4160-2017-3-71-79 (In Russian)

Kay, C. N., Ryals, R. C., Aslanidi, G. V. et al. (2013) Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors. PLOS One, vol. 8, no. 4, article e62097. https://doi.org/10.1371/journal.pone.0062097 (In English)

Kim, H. M., Woo, S. J. (2021) Ocular drug delivery to the retina: Current innovations and future perspectives. Pharmaceutics, vol. 13, no. 1, article 108. https://doi.org/10.3390/pharmaceutics13010108 (In English)

Kim, S. J. (2015) Intravitreal injections and endophthalmitis. International Ophthalmology Clinics, vol. 55, no. 2, pp. 1–10. https://doi.org/10.1097/iio.0000000000000062 (In English)

Korotkikh, S. A., Bobykin, E. V., Ekgardt, V. F. et al. (2019) Intravitreal’nye in’ektsii v usloviyakh real’noj klinicheskoj praktiki: rezul’taty oprosa vrachej-oftal’mokhirurgov ural’skogo federal’nogo okruga [Intravitreal injections in clinical practice: Results of a survey of eye surgeons in the Ural federal district]. Oftal’mologicheskij zhurnal — Ophthalmology Journal, vol. 12, no. 1, pp. 27–36. https://doi.org/10.17816/OV2019127-36 (In Russian)

Leinonen, H., Tanila, H. (2018) Vision in laboratory rodents—tools to measure it and implications for behavioral research. Behavioural brain research, vol. 352, pp. 172–182. https://doi.org/10.1016/j.bbr.2017.07.040 (In English)

Mears, K. (2018) Evaluation of intravitreal injection techniques and intraocular pressure spikes. Journal of the American College of Surgeons, vol. 227, no. 4, article e188. https://doi.org/10.1016/j.jamcollsurg.2018.08.509 (In English)

Perlman, I. (2015) The electroretinogram: ERG by IDO Perlman. Webvision: The Organization of the Retina and Visual System. [Online]. Available at: https://webvision.med.utah.edu/book/electrophysiology/the-electroretinogram-erg (accessed 01.04.2022). (In English)

Pierscionek, B. K., Asejczyk-Widlicka, M., Schachar, R. A. (2007) The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye. British Journal of Ophthalmology, vol. 91, no. 6, pp. 801–803. https://doi.org/10.1136/bjo.2006.110221 (In English)

Planul, A., Dalkara, D. (2017) Vectors and gene delivery to the retina. Annual Review of Vision Science, vol. 3, no. 1, pp. 121–140. https://doi.org/10.1146/annurev-vision-102016-061413 (In English)

Rietschel, E. T., Kirikae, T., Schade, F. U. et al. (1994) Bacterial endotoxin: Molecular relationships of structure to activity and function. The FASEB Journal, vol. 8, no. 2, pp. 217–225. https://faseb.onlinelibrary.wiley.com/doi/pdf/10.1096/fasebj.8.2.8119492 (In English)

Rodieck, R. W. (1998) The first steps in seeing. Sunderland: Sinauer Associates Publ., 562 p. (In English)

Rotov, A. Yu., Romanov, I. S., Tarakanchikova, Ya. V., Astakhova L. A. (2021) Application prospects for synthetic nanoparticles in optogenetic retinal prosthetics. Journal of Evolutionary Biochemistry and Physiology, vol. 57, no. 6, pp. 1333–1350. https://doi.org/10.1134/S0022093021060132 (In English)

Seo, D. R., Choi, K. S. (2015) Fluctuation of the intraocular pressure during intravitreal injection. Journal of Clinical and Experimental Ophthalmology, vol. 6, no. 6, article 506. https://doi.org/10.4172/2155-9570.1000506 (In English)

Tao, Y., Hu, B., Ma, Z. et al. (2020) Intravitreous delivery of melatonin affects the retinal neuron survival and visual signal transmission: In vivo and ex vivo study. Drug Delivery, vol. 27, no. 1, pp. 1386–1396. https://doi.org/10.1080/10717544.2020.1818882 (In English)

Turunen, T. T., Koskelainen, A. (2017) Transretinal ERG in studying mouse rod phototransduction: Comparison with local ERG across the rod outer segments. Investigative Ophthalmology and Visual Science, vol. 58, no. 14, pp. 6133–6145. https://doi.org/10.1167/iovs.17-22248 (In English)

Veleri, S., Lazar, C. H., Chang, B. et al. (2015) Biology and therapy of inherited retinal degenerative disease: Insights from mouse models. Disease Models and Mechanisms, vol. 8, no. 2, pp. 109–129. https://doi.org/10.1242/dmm.017913 (In English)

Wickremasinghe, S. S., Michalova, K., Gilhotra, J. et al. (2008) Acute intraocular inflammation after intravitreous injections of bevacizumab for treatment of neovascular age-related macular degeneration. Ophthalmology, vol. 115, no. 11, pp. 1911–1915. https://doi.org/10.1016/j.ophtha.2008.05.007 (In English)

Published

2022-08-30

Issue

Section

Experimental articles