Autonomic brain in the gut
DOI:
https://doi.org/10.33910/2687-1270-2020-1-1-5-10Keywords:
neurogastroenterology, enteric nervous system, paracrine signaling, Ileus, emesis, power propulsion, postprandial motility, interdigestive motility, gut defense, neural program libraryAbstract
The enteric nervous system (ENS) is an autonomic “brain-in-the-gut” that integrates gastrointestinal motility, secretion and blood flow into homeostatic patterns of gut behavior. Experimental models for the ENS are the same as for all independent integrative nervous systems, whether in the vertebrate brain and spinal cord or in invertebrate animals. The ENS coordinates and organizes the behavior of the musculature, secretory glands and vascular system, in each of the specialized organs of the gastrointestinal tract, into meaningful behavior of each organ. The ENS stores a library of programs for differing patterns of small and large intestinal adaptive behaviors. Programs in the library are akin to 21st century digital “apps” that run on smart phones, tablet computers and comparable devices.
References
Alizadeh, H., Castro, G. A., Weems, W. A. (1987) Intrinsic jejunal propulsion in the guinea pig during parasitism with Trichinella spiralis. Gastroenterology, vol. 93, no. 4, pp. 784–790. DOI: 10.1016/0016-5085(87)90441-0 (In English)
Alizadeh, H., Weems, W. A., Castro, G. A. (1989) Long-term influence of enteric infection on jejunal propulsion in guinea pigs. Gastroenterology, vol. 97, no. 6, pp. 1461–1468. DOI: 10.1016/0016-5085(89)90390-9 (In English)
Brann, L., Wood, J. D. (1976) Motility of the large intestine of piebald lethal mice. American Journal of Digestive Disease, vol. 21, no. 8, pp. 633–640. (In English)
Bucher, D., Taylor, A. L., Marder, E. (2006) Central pattern generating neurons simultaneously express fast and slow rhythmic activities in the stomatogastric ganglion. Journal of Neurophysiology, vol. 95, no. 6, pp. 3617–3632. DOI: 10.1152/jn.00004.2006 (In English)
Code, C. F. (1979) The interdigestive housekeeper of the gastrointestinal tract. Perspectives in Biology and Medicine, vol. 22, no. 2, pt. 2, pp. S49–55. DOI: 10.1353/pbm.1979.0050 (In English)
Code, C. F., Marlett, J. A. (1975) The interdigestive myo-electric complex of the stomach and small bowel of dogs. The Journal of Physiology, vol. 246, no. 2, pp. 289–309. DOI: 10.1113/jphysiol.1975.sp010891 (In English)
Gnetov, A. V., Kachalov, Yu. P. (1975a) Orientatsiya mikroelektroda otnositel’no opticheskoj osi pri issledovanii kletok intramural’nogo nervnogo apparata [Orientation of a microelectrode relative to the optical axis when studying cells of the intramural nervous apparatus]. Fiziologicheskii Zhurnal SSSR Imeni I. M. Sechenova, vol. 61, no. 5, pp. 791–794. (In Russian)
Gnetov, A. V., Kachalov, Yu. P. (1975b) Ispol’zovanie svetovoda dlya vyyavleniya intramuralnykh gangliev i spleteniy v nepovrezhdennom funktsioniruyuschem organe [Use of a light guide for revealing intramural ganglia and plexuses in an intact functioning organ]. Fiziologicheskii Zhurnal SSSR Imeni I. M. Sechenova, vol. 61, no. 5, pp. 794–797. (In Russian)
Lang, I. M. (2016) The role of central and enteric nervous systems in the control of the retrograde giant contraction. Journal of Neurogastroenterology and Motility, vol. 22, no. 2, pp. 321–332. DOI: 10.5056/jnm15141 (In English)
Nozdrachev, A. D. (1977) Funktsional’naya organizatsiya gangliev mienteralnogo spleteniya [Functional organization of the myenterial plexus ganglions]. Fiziologicheskii Zhurnal SSSR Imeni I. M. Sechenova, vol. 63, no. 2, pp. 268–276. (In Russian)
Nozdrachev, A. D., Kachalov, Yu. P., Gnetov, A. V. (1975) Spontannaya aktivnost’ nejronov mienteral’nogo spleteniya v nepovrezhdennoj tonkoj kishke krolika [Spontaneous activity of myenteric plexus neurons in the intact rabbit small intestine]. Fiziologicheskii Zhurnal SSSR Imeni I. M. Sechenova, vol. 61, no. 5, pp. 725–730. (In Russian)
Nozdrachev, A. D., Kachalov, Yu. P., Gnetov, A. V. (1977) Adrenosensitive neurons of the myenteric (Auerbach’s plexus). Bulletin of Experimental Biology and Medicine, vol. 83, no. 3, pp. 287–289. DOI: 10.1007/BF00799338 (In Russian)
Nozdrachev, A. D., Vataev, S. I. (1981) Neuronal electrical activity in the submucosal plexus of the cat small intestine. Journal of Autonomic Nervous System, vol. 3, no. 1, pp. 45–53. DOI: 10.1016/0165-1838(81)90029-1 (In English)
Otterson, M. F., Sarna, S. K. (1994) Neural control of small intestinal giant migrating contractions. American Journal of Physiology, vol. 266, no. 4, pp. G576–584. DOI: 10.1152/ajpgi.1994.266.4.G576 (In English)
Sumbre, G., Gutfreund, Y., Fiorito, G. et al. (2001) Control of octopus arm extension by a peripheral motor program. Science, vol. 293 (5536), pp. 1845–1848. DOI: 10.1126/science.1060976 (In English)
Szurszewski, J. H. (1969) A migrating electric complex of canine small intestine. American Journal of Physiology, vol. 217, no. 6, pp. 1757–1763. PMID: 5353053. DOI: 10.1152/ajplegacy.1969.217.6.1757 (In English)
Wald, A. (2018) Neuromuscular physiology of the pelvic floor. In: H. M. Said, R. K. Ghishan, J. D. Kaunitz et al. (eds.). Physiology of the Gastrointestinal Tract, 6th ed. San Diego: Academic Press, pp. 565–584. (In English)
Wang, G. D., Wang, X. Y., Liu, S. et al. (2014) Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine. American Journal of Physiology — Gastrointestinal and Liver Physiology, vol. 307, no. 7, pp. G719–731. PMID: 25147231. DOI: 10.1152/ajpgi.00125.2014 (In English)
Wang, G. D., Wang, X. Y., Zou, F. et al. (2013) Mast cell expression of the serotonin1A receptor in guinea pig and human intestine. American Journal of Physiology — Gastrointestinal and Liver Physiology, vol. 304, no. 10, pp. G855–863. DOI: 10.1152/ajpgi.00421.2012 (In English)
Wood, J. D. (1970) Electrical activity from single neurons in Auerbach’s plexus. American Journal of Physiology, vol. 219, no. 1, pp. 159–169. DOI: 10.1152/ajplegacy.1970.219.1.159 (In English)
Wood, J. D. (1972) Excitation of intestinal muscle by atropine, tetrodotoxin and xylocaine. American Journal of Physiology, vol. 222, no. 1, pp. 118–125. DOI: 10.1152/ajplegacy.1972.222.1.118 (In English)
Wood, J. D. (1973) Electrical discharge of single enteric neurons of guinea-pig small intestine. American Journal of Physiology, vol. 225, no. 5, pp. 1107–1113. DOI: 10.1152/ajplegacy.1973.225.5.1107 (In English)
Wood, J. D. (1981) Intrinsic neural control of intestinal motility. The Annual Review of Physiology, vol. 43, pp. 33–51. DOI: 10.1146/annurev.ph.43.030181.000341 (In English)
Wood, J. D. (1989) Electrical and synaptic behavior of enteric neurons. In: S. G. Schultz, J. D. Wood (eds.). Handbook of Physiology. Section 6: The Gastrointestinal System. Vol. 1: Motility and Circulation. Oxford: Oxford University Press, pp. 465–517. (Comprehensive Physiology. Supplement 16). DOI: 10.1002/cphy.cp060114 (In English)
Wood, J. D. (2012a) Integrative functions of the enteric nervous system. In: L. R. Johnson, J. D. Kaunitz, F. K. Ghishan et al. (eds.). Physiology of the Gastrointestinal Tract. 5th ed. San Diego: Elsevier, pp. 671–689. (In English)
Wood, J. D. (2012b) Nonruminant Nutrition Symposium: Neurogastroenterology and food allergies. Journal of Animal Science, vol. 90, no. 4, pp. 1213–1223. PMID: 22100595. DOI: 10.2527/jas.2011-4787 (In English)
Wood, J. D. (2018) Enteric nervous system: Brain-in-the-gut. In: H. M. Said, R. K. Ghishan, J.D. Kaunitz et al. (eds.). Physiology of the Gastrointestinal Tract, 6th edition. San Diego: Academic Press, pp. 361–372. (In English)
Wood, J. D. (2016) GRG Profiles: Jackie D. Wood. Digestive Diseases and Sciences, vol. 61, no. 7, pp. 1793–1802. DOI: 10.1007/s10620-016-4182-6 (In English)
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Jackie D. Wood
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.