Electromagnetic radiation impact on the orienting-exploratory activity and cognitive functions of rat strains with contrasting excitability of the nervous system
DOI:
https://doi.org/10.33910/2687-1270-2020-1-2-123-132Keywords:
electromagnetic radiation, weak electromagnetic fields, behaviour, learning, excitability, ratsAbstract
In recent years, the mechanisms of influence that technogenic sources of electromagnetic radiation and the change in the natural electromagnetic field have on biological objects have been actively investigated. Nevertheless, the role of ancestral conditional characteristics of the nervous system in susceptibility towards and resilience against electromagnetic field oscillations has been virtually ignored. The objective of our research is to investigate the impact of the UHF band radiation emitted by a standard Wi-Fi router and the impact of external magnetic and electric fields weakened by shielding on animals’ innate behaviour which reflects orientational and exploratory activity and emotional response in an Open Field Test, and also on the cognitive functions (retention of the conditioned response of passive avoidance) of male rats from two selected strains: HT and LT — with high and low thresholds of nervous system excitability, and control Wistar rats. The outcomes of the study confirm the negative impact of weak external electric and magnetic fields, as well as EMR of the UHF band, on innate behaviour and memory in rats regardless of the selected strain, although HT rats were more sensitive to changes in magnetic and electric fields and electromagnetic radiation in comparison with LT rats.
References
ЛИТЕРАТУРА
Вайдо, А. И. (2000) Физиолого-генетический анализ возбудимости нервной системы и поведения лабораторной крысы. Диссертация на соискание ученой степени доктора биологических наук. СПб., Институт физиологии им. И. П. Павлова РАН, 197 с.
Вайдо, А. И., Ширяева, Н. В., Павлова, М. Б. и др. (2018) Селектированные линии крыс с высоким и низким порогом возбудимости: модель для изучения дезадаптивных состояний, зависимых от уровня возбудимости нервной системы. Лабораторные животные для научных исследований, № 3, с. 12–22. DOI: 10.29296/2618723X-2018-03-02
Дюжикова, Н. А., Копыльцов, А. В., Коршунов, К. А. и др. (2018) Действие электромагнитного излучения высокой частоты и влияние резонаторов-преобразователей на частоту хромосомных аберраций в клетках костного мозга самцов крыс линии Вистар. Электромагнитные волны и электронные системы, т. 23, № 1, с. 12–18.
Дюжикова, Н. А., Вайдо, А. И., Даев, Е. В. и др. (2019) Влияние электромагнитного излучения УВЧ-диапазона на дестабилизацию генома клеток костного мозга у крыс линий с контрастной возбудимостью нервной системы. Экологическая генетика, т. 17, № 2, с. 83–92. DOI: 10.17816/ecogen17283-92
Никитина, Е. А., Медведева, А. В., Герасименко, М. С. и др. (2017) Ослабленное магнитное поле Земли: влияние на транскрипционную активность генома, обучение и память у Dr. melanogaster. Журнал высшей нервной деятельности им. И. П. Павлова, т. 67, № 2, с. 246–256. DOI: 10.7868/S0044467717020101
Плохинский, Н. А. (1970) Биометрия. 2-е изд. М.: Изд-во МГУ, 367 с.
Сурма, С. В., Кузнецов, П. А., Хрусталева, Р. С. и др. (2012) Устройство для исследования влияния электромагнитных полей на биологические объекты. Патент RU2454675C2. Дата регистрации 27.06.2012. Выдано Роспатентом.
Buchachenko, A. L. (2014) Magnetic field-dependent molecular and chemical processes in biochemistry,genetics and medicine. Russian Chemical Reviews, vol. 83, no. 1, pp. 1–12. DOI: 10.1070/RC2014v083n01ABEH004335
Burlaka, A. P., Druzhyna, M. O., Vovk, A. V., Lukin, S. М. (2016) Disordered redox metabolism of brain cells in rats exposed to low doses of ionizing radiation or UHF electromagnetic radiation. Experimental Oncology, vol. 38, no. 4, pp. 238–241. PMID: 28230822.
Di, G., Kim, H., Xu, Y. et al. (2019) A comparative study on influences of static electric field and power frequency electric field on cognition in mice. Environmental Toxicology and Pharmacology, vol. 66, pp. 91–95. PMID: 30639900. DOI: 10.1016/j.etap.2019.01.001
Karthick, T., Sengottuvelu, S., Haja Sherief, H., Duraisami, R. (2017) Review: Biological effects of magnetic fields on rodents. Scholars Journal of Applied Medical Sciences, vol. 5 (4E), pp. 1569–1580.
Lai, Н. (2005) Biological effects of radiofrequency electromagnetic fields. In: Gary E. Wnek, Gary L. Bowlin (eds.). Encyclopedia of biomaterials and biomedical engineering. Vol. 1. 2nd ed. New York; London: Informa Healthcare, pp. 254–261.
Pall, M. L. (2016) Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression. Journal of Chemical Neuroanatomy, vol. 75, pt B, pp. 43–51. PMID: 26300312. DOI: 10.1016/j.jchemneu.2015.08.001
Schneider, J., Stangassinger, M. (2014) Nonthermal effects of lifelong high-frequency electromagnetic field exposure on social memory performance in rats. Behavioral Neuroscience, vol. 128, no. 5, pp. 633–637. PMID: 24999587. DOI: 10.1037/a0037299
Spivak, I. M., Kuranova, M. L., Mavropulo-Stolyarenko, G. R. et al. (2016) Cell response to extremely weak static magnetic fields. Biophysics, vol. 61, no. 3, pp. 435–439. DOI: 10.1134/S0006350916030180
Terzi, M., Ozberk, B., Deniz, O. G., Kaplan, S. (2016) The role of electromagnetic fields in neurological disorders. Journal of Chemical Neuroanatomy, vol. 75, pt B, pp. 77–84. PMID: 27083321. DOI: 10.1016/j.jchemneu.2016.04.003
Wang, С. Х., Hilburn, I. A., Wu, D.-A. et al. (2019) Transduction of the geomagnetic field as evidenced from alpha-band activity in the human brain. eNeuro, vol. 6, no. 2, article e0483-18.2019. PMID: 31028046. DOI: 10.1523/ eneuro.0483-18.2019
REFERENCES
Buchachenko, A. L. (2014) Magnetic field-dependent molecular and chemical processes in biochemistry, genetics and medicine. Russian Chemical Reviews, vol. 83, no. 1, pp. 1–12. DOI: 10.1070/RC2014v083n01ABEH004335 (In English)
Burlaka, A. P., Druzhyna, M. O., Vovk, A. V., Lukin, S. М. (2016) Disordered redox metabolism of brain cells in rats exposed to low doses of ionizing radiation or UHF electromagnetic radiation. Experimental Oncology, vol. 38, no. 4, pp. 238–241. PMID: 28230822. (In English)
Di, G., Kim, H., Xu, Y. et al. (2019) A comparative study on influences of static electric field and power frequency electric field on cognition in mice. Environmental Toxicology and Pharmacology, vol. 66, pp. 91–95. PMID: 30639900. DOI: 10.1016/j.etap.2019.01.001 (In English)
Dyuzhikova, N. A., Kopyltsov, A. V., Korshunov, К. A. et al. (2018) Dejstvie electromagnitnogo izlucheniya vysokoj chastoty i vliyanie rezonatorov-preobrazovatelej na chastotu khromosomnykh aberratsij v kletkakh kostnogo mozga samtsov krys linij Vistar [The effect of high-frequency electromagnetic radiation and the effect of resonator-convertors on the frequency of chromosomal aberrations in bone marrow cells of male Wistar rats]. Elektromagnitnye volny i elektronnye sistemy — Electromagnetic Waves and Electronic Systems, vol. 23, no. 1, pp. 12–18. (In Russian)
Dyuzhikova, N. A., Vaido, A. I., Daev, E. V. et al. (2019) Vliyaniye electromagnitnogo izlucheniya UVCh-diapazona na destabilizatsiyu genoma kletok kostnogo mozga u krys linij s kontrastnoj vozbudimost’yu nervnoj systemy [Impact of electromagnetic UHF radiation on genome destabilization in bone marrow cell of rat strains with contrast nervous system excitability]. Ekologicheskaya genetika — Ecological Genetics, vol. 17, no. 2, pp. 83–92. DOI: 10.17816/ecogen17283-92 (In Russian)
Karthick, T., Sengottuvelu, S., Haja Sherief, H., Duraisami, R. (2017) Review: Biological effects of magnetic fields on rodents. Scholars Journal of Applied Medical Sciences, vol. 5 (4E), pp. 1569–1580. (In English)
Lai, Н. (2005) Biological effects of radiofrequency electromagnetic fields. In: Gary E. Wnek, Gary L. Bowlin (eds.). Encyclopedia of biomaterials and biomedical engineering. Vol. 1. 2nd ed. New York; London: Informa Healthcare, pp. 254–261. (In English)
Nikitina, E. A., Medvedeva, A. V., Gerasimenko, M. S. et al. (2017) Oslablennoe magnitnoe pole Zemli: vliyaniye na transkriptsionnuyu aktivnost’ genoma, obuchenie i pamyat’ u Dr. melanogaster [Weakened geomagnetic field: impact on transcriptional activity of the genome, learning and memory formation in Dr. melanogaster]. Zhurnal visshej nervnoj deyatel’nosti — I. P. Pavlov Journal Of Higher Nervous Activity, vol. 67, no. 2, pp. 246–256. DOI: 10.7868/S0044467717020101 (In Russian)
Pall, M. L. (2016) Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression. Journal of Chemical Neuroanatomy, vol. 75, pt B, pp. 43–51. PMID: 26300312. DOI: 10.1016/j.jchemneu.2015.08.001 (In English)
Plokhinskij, N. A. (1970) Biometriya [Biometrics]. 2nd ed. Moscow: Moscow State University Publ., 367 p. (In Russian)
Schneider, J., Stangassinger, M. (2014) Nonthermal effects of lifelong high-frequency electromagnetic field exposure on social memory performance in rats. Behavioral Neuroscience, vol. 128, no. 5, pp. 633–637. PMID: 24999587. DOI: 10.1037/a0037299 (In English)
Spivak, I. M., Kuranova, M. L., Mavropulo-Stolyarenko, G. R. et al. (2016) Cell response to extremely weak static magnetic fields. Biophysics, vol. 61, no. 3, pp. 435–439. DOI: 10.1134/S0006350916030180 (In English)
Surma, S. V., Kuznecov, P. A., Hrustaleva, R. S. et al. (2012) Ustrojstvo dlya issledovaniya vliyaniya elektromagnitnyh polej na biologicheskie ob’ekty [Device for the study of the influence of electromagnetic fields on biological objects]. Patent RU2454675C2. Register date 27.06.2012. Granted by Rospatent. (In Russian)
Terzi, M., Ozberk, B., Deniz, O. G., Kaplan, S. (2016) The role of electromagnetic fields in neurological disorders. Journal of Chemical Neuroanatomy, vol. 75, pt B, pp. 77–84. PMID: 27083321. DOI: 10.1016/j.jchemneu.2016.04.003 (In English)
Vaido, A. I. (2000) Fiziologo-geneticheskij analiz vozbudimosti nervnoj sistemy i povedeniya laboratornoj krysy [Physiological and genetic analysis of the excitability of the nervous system and the behavior of the laboratory rat]. PhD dissertation (Biology). Saint Petersburg, Pavlov Institute of Physiology of the Russian Academy of Sciences, 197 p. (In Russian).
Vaido, A. I., Shiryaeva, N. V., Pavlova, M. B. et al. (2018) Selektirovannye linii krys s vysokim i nizkim porogom vozbudimosti: model’ dlya izucheniya dezadaptivnykh sostoyanij zavisimyh ot urovnya vozbudimosti nervnoj sistemy [Selected rat strains HT, LT as a model for the study of dysadaptation states dependent on the level of excitability of the nervous system]. Laboratornye zhivotnye dlya nauchnykh issledovanij — Laboratory Animals for Science, vol. 3, pp. 12–22. DOI: 10.29296/2618723X-2018-03-02 (In Russian)
Wang, С. Х., Hilburn, I. A., Wu, D.-A. et al. (2019) Transduction of the geomagnetic field as evidenced from alpha-band activity in the human brain. eNeuro, vol. 6, no. 2, article e0483-18.2019. PMID: 31028046. DOI: 10.1523/eneuro.0483-18.2019 (In English)
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Natalya V. Shiryaeva, Alexander I. Vaido, Marina B. Pavlova, Sergey V. Surma, Boris F. Shchegolev
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.