Electrical synapses on the axon form spontaneous burst activity of the Retzius neuron of the leech

Authors

DOI:

https://doi.org/10.33910/2687-1270-2023-4-2-235-243

Keywords:

Retzius neurons, Hirudo medicinalis, pronase, reverberation activity, spontaneous impulse activity, electrical synapse, gap junction

Abstract

The purpose of this article was to demonstrate the variation of impulse activity of a neuron when electrical synapses (ES) appear on its branches. The object of research was an abdominal nerve ganglion of a medical leech. Spontaneous impulse activity of one of the neurons on the surface of a ganglion was registered. In order to obtain ES we used 0.4% pronase solution to transform the ganglion into a new nerve structure, namely, a glial-free ganglion. We studied impulse activity frequency, amplitude and the duration of spikes of an individual neuron. It was found that in the glial-free ganglion, the neuron generates a burst of impulses. The duration of the first impulse in the burst is equal to the duration of a spontaneous spike of a neuron, usually (6.00±0.86 ms and 5.95±0.29 ms), and the duration of subsequent impulses in the burst is equal to 2.45±0.5 ms. A gradual drop in the amplitude and a change in the duration of impulses in the burst is a typical sign of reverberation. Using a graphical model, we have attempted to demonstrate the way in which a chain of ES between neuronal processes in a ganglion can generate reverberant activity in one cell without involving the soma of other cells. The graphic model shows the processes underlying this reaction. Thus, both the experimental and theoretical analysis of such a simple model of nervous tissue as the modified ganglion of an abdominal nerve chain of the leech demonstrates the diversity and undiscovered possibilities of ES contribution to the neural mechanisms of the nervous system.

References

Alcamí, P., Pereda, A. E. (2019) Beyond plasticity: The dynamic impact of electrical synapses on neural circuits. Nature Reviews Neuroscience, vol. 20, no. 5, pp. 253–271. https://doi.org/10.1038/s41583-019-0133-5 (In English)

Arbib, M. A., Boylls, C. C., Dev, P. (1974) Neural models of spatial perception and the control of movement. In: W. D. Keidel, W. Händler, M. Spreng (eds.). Cybernetics and bionics. Munich: R. Oldenbourg Verlag, pp. 216–231. (In English)

Başar, E., Düzgün, A. (2016) The brain as a working syncytium and memory as a continuum in a hyper timespace: Oscillations lead to a new model. International Journal of Psychophysiology, vol. 103, pp. 199–214. https://doi.org/10.1016/j.ijpsycho.2015.02.019 (In English)

Belousov, A. B., Fontes, J. D., Freitas-Andrade, M. et al. (2017) Gap junctions and hemichannels: Communicating cell death in neurodevelopment and disease. BMC Molecular and Cell Biology, vol. 18, no. 1, article 4. https://doi.org/10.1186/s12860-016-0120-x (In English)

Bissiere, S., Zelikowsky, M., Ponnusamy, R. et al. (2011) Electrical synapses control hippocampal contributions to fear learning and memory. Science, vol. 331, no. 6013, pp. 87–91. https://doi.org/10.1126/science.1193785 (In English)

Curti, S., Davoine, F., Dapino, A. (2022) Function and plasticity of electrical synapses in the mammalian brain: Role of non-junctional mechanisms. Biology, vol. 11, no. 1, article 81. https://doi.org/10.3390/biology11010081 (In English)

De-Miguel, F. F. (2000) Steps in the formation of neurites and synapses studied in cultured leech neurons. Brazilian Journal of Medical and Biological Research, vol. 33, no. 5, pp. 487–497. https://doi.org/10.1590/s0100-879x2000000500002 (In English)

Dykes, I. M., Freeman, F. M., Bacon, J. P., Davies, J. A. (2004) Molecular basis of gap junctional communication in the CNS of the Leech hirudo medicinalis. Journal of Neuroscience, vol. 24, no. 4, pp. 886–894. https://doi.org/10.1523/JNEUROSCI.3676-03.2004 (In English)

Eccles, J. C. (1973) The understanding of the brain. New York: McGraw-Hill Publ., 224 p. (In English)

Firme, C. P. III, Natan, R. G., Yazdani, N. et al. (2012) Ectopic expression of select innexins in individual central neurons couples them to pre-existing neuronal or glial networks that express the same innexin. Journal of Neuroscience, vol. 32, no. 41, pp. 14265–14270. https://doi.org/10.1523/jneurosci.2693-12.2012 (In English)

Hunnicutt, B. J., Krzywinski, M. (2016) Neural circuit diagrams. Nature Methods, vol. 13, no. 3, article 189. https://doi.org/10.1038/nmeth.3777 (In English)

Ixmatlahua, D. J., Vizcarra, B., Gómez-Lira, G. et al. (2020) Neuronal glutamatergic network electrically wired with silent but activatable gap junction. Journal of Neuroscience, vol. 40, no. 24, pp. 4661–4672. https://doi.org/10.1523/jneurosci.2590-19.2020 (In English)

Kandarian, B., Sethi, J., Wu, A. et al. (2012) The medicinal leech genome encodes 21 innexin genes: Different combinations are expressed by identified central neurons. Development Genes and Evolution, vol. 222, no. 1, pp. 29–44. https://doi.org/10.1007/s00427-011-0387-z (In English)

Kirichenko, E. Yu., Skatchkov, S. N., Ermakov, A. M. (2021) Structure and functions of gap junctions and their constituent connexins in the mammalian CNS. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology, vol. 15, no. 2, pp. 107–119. https://doi.org/10.1134/s1990747821020069 (In English)

Lee, S.-C., Cruikshank, S. J., Connors, B. W. (2010) Electrical and chemical synapses between relay neurons in developing thalamus. The Journal of Physiology, vol. 588, no. 13, pp. 2403–2415. https://doi.org/10.1113/jphysiol.2010.187096 (In English)

Long, M. A., Landisman, C. E., Connors, B. W. (2004) Small clusters of electrically coupled neurons generate synchronous rhythms in the thalamic reticular nucleus. Journal of Neuroscience, vol. 24, no. 2, pp. 341–349. https://doi.org/10.1523/jneurosci.3358-03.2004 (In English)

Lunko, O. O., Isaev, D. S., Maximyuk, O. P. et al. (2014) Kharakteristiki postijnogo natrievogo strumu v piramidal’nykh nejronakh CA1 zoni gipokampa shchuriv pislya obrobki proteolitichnimi fermentami [The effect of enzymatic treatment using proteases on properties of persistent sodium current in CA1 pyramidal neurons of rat hippocampus]. Fiziologichnyi Zhurnal, vol. 60, no. 3, pp. 75–79. https://pubmed.ncbi.nlm.nih.gov/25097934 (In Ukrainian)

Maraver, J. J. A., Mata, S., Benavides-Piccione, R. et al. (2018) A method for the symbolic representation of neurons. Frontiers in Neuroanatomy, vol. 12, article 106. https://doi.org/10.3389/fnana.2018.00106 (In English)

Mylvaganam, S., Ramani, M., Krawczyk, M., Carlen, P. L. (2014) Roles of gap junctions, connexins, and pannexins in epilepsy. Frontiers in Physiology, vol. 5, article 172. https://doi.org/10.3389/fphys.2014.00172 (In English)

Nagy, J. I., Pereda, A. E., Rash, J. E. (2018) Electrical synapses in mammalian CNS: Past eras, present focus and future directions. Biochimica et Biophysica Acta (BBA) — Biomembranes, vol. 1860, no. 1, pp. 102–123. https://doi.org/10.1016/j.bbamem.2017.05.019 (In English)

Parker, P. R. L., Cruikshank, S. J., Connors, B. W. (2009) Stability of electrical coupling despite massive developmental changes of intrinsic neuronal physiology. Journal of Neuroscience, vol. 29, no. 31, pp. 9761–9770. https://doi.org/10.1523/JNEUROSCI.4568-08.2009 (In English)

Peinado, A., Yuste, R., Katz, L. C. (1993) Gap junctional communication and the development of local circuits in neocortex. Cerebral Cortex, vol. 3, no. 5, pp. 488–498. https://doi.org/10.1093/cercor/3.5.488 (In English)

Pereda, A. E., Miller, A. C. (2021) On the location of electrical synapses. Developmental Cell, vol. 56, no. 23, pp. 3178–3180. https://doi.org/10.1016/j.devcel.2021.11.010 (In English)

Sergeeva, S. S. (2020) Vzaimodejstvie mezhdu nervnoj i sekretornoj funktsiyami v osushchestvlenii integrativnoj deyatel’nosti nejrosekretornoj kletki Rettsiusa piyavki. Obzor [The interaction between nervous and secretory functions in the integrative activity of the neurosecretory Retzius cell of the leech. A review]. Integrativnaya fiziologiya — Integrative Physiology, vol. l, no. 3, pp. 212–217. https://doi.org/10.33910/2687-1270-2020-1-3-212-217 (In Russian)

Sergeeva, S. S., Sotnikov, O. S., Paramonova, N. M. (2020) Sposob sozdaniya nejrofiziologicheskoj modeli prostoj nervnoj sistemy, obladayushchej reverberatsiej [Method for creating a neurophysiological model of a simple nervous system possessing reverberation]. Rossijskij fiziologicheskij zhurnal im. I. M. Sechenova — Russian Journal of Physiology, vol. 106, no. 9, pp. 1163–1169. https://doi.org/10.31857/S0869813920080075 (In Russian)

Simões de Souza, F. M., De Schutter, E. (2011) Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations. Neural Systems & Circuits, vol. 1, no. 1, article 7. https://doi.org/10.1186/2042-1001-1-7 (In English)

Sotnikov, O. S. (2021) Seriya eksperimental’nykh elektricheskikh sinapsov i reverberatsiya nervnogo impul’sa [A series of experimental electrical synapses and reverberation of a nerve impulse]. Tekhnologii zhivykh sistem — Technologies of Living Systems, vol. 18, no. 3, pp. 52–57. (In Russian)

Sotnikov, O. S., Lukovnikova, M. V., Vasyagina, N. Yu. et al. (2009) Izmenenie nejronov mollyuska pri dejstvii proteoliticheskikh fermentov [Changes of molluscan neurons under the influence of proteolytic enzymes]. Morfologiya — Morphology, vol. 136, no. 5, pp. 36–41. (In Russian)

Sotnikov, O. S., Sergeeva, S. S., Paramonova, N. M. (2023) The effect of pronase on mollusk, leech and frog nerve ganglia causes the formation of neuron–neuronal gap junctions. Cell and Tissue Biology, vol. 17, no. 2, pp. 197–202. https://doi.org/10.1134/S1990519X23020128 (In English)

Thomas, D., Senecal, J. M., Lynn, B. D. et al. (2020) Connexin 36 localization along axon initial segments in the mammalian CNS. International Journal of Physiology, Pathophysiology and Pharmacology, vol. 12, no. 6, pp. 153–165. https://pubmed.ncbi.nlm.nih.gov/33500746 (In English)

Walton, K. D., Navarette, R. (1991) Postnatal changes in motoneurone electronic coupling studied in the in vitro at lumbar spinal cord. The Journal of Physiology, vol. 433, no. 1, pp. 283–305. https://doi.org/10.1113/jphysiol.1991.sp018426 (In English)

Wang, Y., Belousov, A. B. (2011) Deletion of neuronal gap junction protein connexin 36 impairs hippocampal LTP. Neuroscience Letters, vol. 502, no. 1, pp. 30–32. https://doi.org/10.1016/j.neulet.2011.07.018 (In English)

Published

2023-09-01

Issue

Section

Experimental articles