Distortion of human auditory space in a dynamic acoustic environment

Authors

DOI:

https://doi.org/10.33910/2687-1270-2023-4-2-198-212

Keywords:

spatial hearing, distortion of auditory space, lateralization of sound image, interaural level differences, sound signals with delayed onset of motion

Abstract

We investigated the psychophysical responses of healthy adult subjects listening to stationary and moving auditory stimuli. Spatial properties of sounds were created using linear changes of interaural level differences. The moving stimuli contained stationary initial and final fragments and a moving fragment embedded between them. The three fragments followed each other without a gap. The subjects indicated the perceived sound trajectories using a graphic tablet. It was shown that the presence of a moving fragment expanded the subjective auditory space compared to the localization of stationary sound signals. This effect was more pronounced at the periphery than near the head midline, and it was stronger for the initial points of the trajectory than for the final ones. When the sounds moved from the ears towards the center, the initial lateral points shifted by 10–13 degrees against the direction of movement. When the sounds moved from the center towards the ears, the final points of the trajectory slightly shifted in the direction of movement. The sound velocity had no effect on the distortion of auditory space.

References

СПИСОК ЛИТЕРАТУРЫ

Альтман, Я. А. (2008) Инерционные процессы в слуховой системе при локализации движущихся источников звука. Журнал высшей нервной деятельности, т. 58, № 3, с. 309–318.

Альтман, Я. А. (2011) Пространственный слух. СПб.: Институт физиологии им. И. П. Павлова РАН, 311 с.

Блауэрт, Й. (1979) Пространственный слух. Москва: Энергия, 224 с.

Варфоломеев, A. Л., Старостина, Л. В. (2006) Слуховые вызванные потенциалы человека при иллюзорном движении звукового образа. Российский физиологический журнал им. И. М. Сеченова, т. 92, № 9, с. 1046–1057.

Варягина, О. В. (2001) Оценка человеком начальной точки траектории движения звукового образа. Сенсорные системы, т. 15, № 4, с. 324–333.

Варягина, О. В. (2005) Оценка испытуемыми длины траектории движения слитного звукового образа. Физиология человека, т. 31, № 3, с. 32–38.

Петропавловская, Е. А., Шестопалова, Л. Б., Вайтулевич, С. Ф. (2010) Проявления инерционности слуховой системы при локализации движущихся звуковых образов малой длительности. Физиология человека, т. 36, № 4, с. 34–43.

Петропавловская, Е. А., Шестопалова, Л. Б., Вайтулевич, С. Ф. (2011) Предсказательная способность слуховой системы при плавном движении и скачкообразном перемещении звуковых образов малой длительности. Журнал высшей нервной деятельности, т. 61, № 3, с. 293–305.

Семенова, В. В., Петропавловская, Е. А., Шестопалова, Л. Б., Никитин, Н. И. (2020) Константы восприятия отсроченного движения звуковых стимулов. Успехи физиологических наук, т. 51, № 2, с. 55–67. https://doi.org/10.31857/S0301179820020095

Altman, J. A., Variaguina, O. V., Nikitin, N. I., Radionova, E. A. (1999) Lateralization of a moving auditory image: Interrelation of interaural time and intensity differences. The Journal of the Acoustical Society of America, vol. 105, no. 1, pp. 366–376. https://doi.org/10.1121/1.424603

Dingle, R. N., Hall, S. E., Phillips, D. P. (2012) The three-channel model of sound localization mechanisms: Interaural level differences. The Journal of the Acoustical Society of America, vol. 131, no. 5, pp. 4023–4029. https://doi.org/10.1121/1.3701877

Getzmann, S. (2005a) Representational momentum in spatial hearing does not depend on eye movements. Experimental Brain Research, vol. 165, no. 2, pp. 229–238. https://doi.org/10.1007/s00221-005-2291-0

Getzmann, S. (2005b) Shifting the onset of a moving sound source: A Fröhlich effect in spatial hearing. Hearing Research, vol. 210, no. 1-2, pp. 104–111. https://doi.org/10.1016/j.heares.2005.08.003

Getzmann, S. (2008) Effects of velocity and motion-onset delay on detection and discrimination of sound motion. Hearing Research, vol. 246, no. 1-2, pp. 44–51. https://doi.org/10.1016/j.heares.2008.09.007

Getzmann, S. (2009) Effect of auditory motion velocity on reaction time and cortical processes. Neuropsychologia, vol. 47, no. 12, pp. 2625–2633. https://doi.org/10.1016/j.neuropsychologia.2009.05.012

Getzmann, S., Lewald, J. (2007) Localization of moving sound. Perception & Psychophysics, vol. 69, no. 6, pp. 1022–1034. https://doi.org/10.3758/bf03193940

Getzmann, S., Lewald, J. (2009) Constancy of target velocity as a critical factor in the emergence of auditory and visual representational momentum. Experimental Brain Research, vol. 193, no. 3, pp. 437–443. https://doi.org/10.1007/s00221-008-1641-0

Getzmann, S., Lewald, J. (2010) Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion. Hearing Research, vol. 259, no. 1-2, pp. 44–54. https://doi.org/10.1016/j.heares.2009.09.021

Getzmann, S., Lewald, J., Guski, R. (2004) Representational momentum in spatial hearing. Perception, vol. 33, no. 5, pp. 591–599. https://doi.org/10.1068/p5093

Golob, E. J., Lewald, J., Getzmann, S., Mock, J. R. (2017) Numerical value biases sound localization. Science Reports, vol. 7, no. 1, article 17252. https://doi.org/10.1038/s41598-017-17429-4

Golob, E. J., Lewald, J., Jungilligens, J., Getzmann, S. (2016) Interaction of number magnitude and auditory localization. Perception, vol. 45, no. 1-2, pp. 165–179. https://doi.org/10.1177/0301006615599906

Grantham, D. W. (1986) Detection and discrimination of simulated motion of auditory targets in the horizontal plane. Journal of the Acoustical Society of America, vol. 79, no. 6, pp. 1939–1949. https://doi.org/10.1121/1.393201

Irvine, D. R. F. (2018) Auditory perceptual learning and changes in the conceptualization of auditory cortex. Hearing Research, vol. 366, pp. 3–16. https://doi.org/10.1016/j.heares.2018.03.011

Krumbholz, K., Hewson-Stoate, N., Schönwiesner, M. (2007) Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices. Journal of Neurophysiology, vol. 97, no. 2, pp. 1649–1655. https://doi.org/10.1152/jn.00560.2006

Lee, A. K. C., Deane-Pratt, A., Shinn-Cunningham, B. G. (2009) Localization interference between components in an auditory scene. The Journal of the Acoustical Society of America, vol. 126, no. 5, pp. 2543–2555. https://doi.org/10.1121/1.3238240

Lewald, J., Ehrenstein, W. H. (2001) Spatial coordinates of human auditory working memory. Cognitive Brain Research, vol. 12, no. 1, pp. 153–159. https://doi.org/10.1016/s0926-6410(01)00042-8

Ozmeral, E. J., Eddins, D. A., Eddins, A. C. (2019) Electrophysiological responses to lateral shifts are not consistent with opponent-channel processing of interaural level differences. Journal of Neurophysiology, vol. 122, no. 2, pp. 737–748. https://doi.org/10.1152/jn.00090.2019

Perrott, D. R., Musicant, A. D. (1977) Minimum audible movement angle: Binaural localization of moving sound sources. The Journal of the Acoustical Society of America, vol. 62, no. 6, pp. 1463–1466. https://doi.org/10.1121/1.381675

Roelfsema, P. R., Holtmaat, A. (2018) Control of synaptic plasticity in deep cortical networks. Nature Reviews Neurosciences, vol. 19, no. 3, pp. 166–180. https://doi.org/10.1038/nrn.2018.6

Shestopalova, l. B., Petropavlovskaia, E. A., Salikova, D. A. et al. (2022) Event-related potentials in conditions of auditory spatial masking in humans. Human Physiology, vol. 48, no. 6, pp. 633–643. https://doi.org/10.1134/S0362119722700098

Yost, W. A., Hafter, E. R. (1987) Lateralization. In: W. A. Yost, G. Gourevitch (eds.). Directional hearing. New York: Springer Publ., pp. 49–84. https://doi.org/10.1007/978-1-4612-4738-8_3

REFERENCES

Altman, Ya. A. (2008) Inertsionnye protsessy v slukhovoy sisteme pri lokalizatsii dvizhischikhsya istochnikov zvuka [Inertial processes in the auditory system during localization of moving sound sources]. Zhurnal vysshey nervnoy deyatelnosti, vol. 58, no. 3, pp. 309–318. (In Russian)

Altman, J. A. (2011) Prostransrvennyj slukh [Spatial hearing]. Saint Petersburg: Pavlov Institute of Physiology RAS Publ., 311 p. (In Russian)

Altman, J. A., Variaguina, O. V., Nikitin, N. I., Radionova, E. A. (1999) Lateralization of a moving auditory image: Interrelation of interaural time and intensity differences. The Journal of the Acoustical Society of America, vol. 105, no. 1, pp. 366–376. https://doi.org/10.1121/1.424603 (In English)

Blauert, J. (1979) Prostransrvennyj slukh [Spatial hearing]. Moscow: Energiya Publ., 224 p. (In Russian)

Dingle, R. N., Hall, S. E., Phillips, D. P. (2012) The three-channel model of sound localization mechanisms: Interaural level differences. The Journal of the Acoustical Society of America, vol. 131, no. 5, pp. 4023–4029. https://doi.org/10.1121/1.3701877 (In English)

Getzmann, S. (2005a) Representational momentum in spatial hearing does not depend on eye movements. Experimental Brain Research, vol. 165, no. 2, pp. 229–238. https://doi.org/10.1007/s00221-005-2291-0 (In English)

Getzmann, S. (2005b) Shifting the onset of a moving sound source: A Fröhlich effect in spatial hearing. Hearing Research, vol. 210, no. 1-2, pp. 104–111. https://doi.org/10.1016/j.heares.2005.08.003 (In English)

Getzmann, S. (2008) Effects of velocity and motion-onset delay on detection and discrimination of sound motion. Hearing Research, vol. 246, no. 1-2, pp. 44–51. https://doi.org/10.1016/j.heares.2008.09.007 (In English)

Getzmann, S. (2009) Effect of auditory motion velocity on reaction time and cortical processes. Neuropsychologia, vol. 47, no. 12, pp. 2625–2633. https://doi.org/10.1016/j.neuropsychologia.2009.05.012 (In English)

Getzmann, S., Lewald, J. (2007) Localization of moving sound. Perception & Psychophysics, vol. 69, no. 6, pp. 1022–1034. https://doi.org/10.3758/bf03193940 (In English)

Getzmann, S., Lewald, J. (2009) Constancy of target velocity as a critical factor in the emergence of auditory and visual representational momentum. Experimental Brain Research, vol. 193, no. 3, pp. 437–443. https://doi.org/10.1007/s00221-008-1641-0 (In English)

Getzmann, S., Lewald, J. (2010) Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion. Hearing Research, vol. 259, no. 1-2, pp. 44–54. https://doi.org/10.1016/j.heares.2009.09.021 (In English)

Getzmann, S., Lewald, J., Guski, R. (2004) Representational momentum in spatial hearing. Perception, vol. 33, no. 5, pp. 591–599. https://doi.org/10.1068/p5093 (In English)

Golob, E. J., Lewald, J., Getzmann, S., Mock, J. R. (2017) Numerical value biases sound localization. Science Reports, vol. 7, no. 1, article 17252. https://doi.org/10.1038/s41598-017-17429-4 (In English)

Golob, E. J., Lewald, J., Jungilligens, J., Getzmann, S. (2016) Interaction of number magnitude and auditory localization. Perception, vol. 45, no. 1-2, pp. 165–179. https://doi.org/10.1177/0301006615599906 (In English)

Grantham, D. W. (1986) Detection and discrimination of simulated motion of auditory targets in the horizontal plane. Journal of the Acoustical Society of America, vol. 79, no. 6, pp. 1939–1949. https://doi.org/10.1121/1.393201

Irvine, D. R. F. (2018) Auditory perceptual learning and changes in the conceptualization of auditory cortex. Hearing Research, vol. 366, pp. 3–16. https://doi.org/10.1016/j.heares.2018.03.011 (In English)

Krumbholz, K., Hewson-Stoate, N., Schönwiesner, M. (2007) Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices. Journal of Neurophysiology, vol. 97, no. 2, pp. 1649–1655. https://doi.org/10.1152/jn.00560.2006 (In English)

Lee, A. K. C., Deane-Pratt, A., Shinn-Cunningham, B. G. (2009) Localization interference between components in an auditory scene. The Journal of the Acoustical Society of America, vol. 126, no. 5, pp. 2543–2555. https://doi.org/10.1121/1.3238240 (In English)

Lewald, J., Ehrenstein, W. H. (2001) Spatial coordinates of human auditory working memory. Cognitive Brain Research, vol. 12, no. 1, pp. 153–159. https://doi.org/10.1016/s0926-6410(01)00042-8 (In English)

Ozmeral, E. J., Eddins, D. A., Eddins, A. C. (2019) Electrophysiological responses to lateral shifts are not consistent with opponent-channel processing of interaural level differences. Journal of Neurophysiology, vol. 122, no. 2, pp. 737–748. https://doi.org/10.1152/jn.00090.2019 (In English)

Perrott, D. R., Musicant, A. D. (1977) Minimum audible movement angle: Binaural localization of moving sound sources. The Journal of the Acoustical Society of America, vol. 62, no. 6, pp. 1463–1466. https://doi.org/10.1121/1.381675 (In English)

Petropavlovskaia, E. A., Shestopalova, L. B., Vaitulevich, S. F. (2010) Proyavleniya inertsionnosti slukhovoj sistemy pri lokalizatsii dvizhushchikhsya zvukovykh obrazov maloj dlitel’nosti [Manifestations of the inertia of the auditory system when localizing moving sound images of short duration]. Fiziologiya cheloveka — Human Physiology, vol. 36, no. 4, pp. 34–43. (In Russian)

Petropavlovskaia, E. A., Shestopalova, L. B., Vaitulevich, S. F. (2011) Predskazatel’naya sposobnost’ slukhovoj sistemy pri plavnom dvizhenii i skachkoobraznom peremeshchenii zvukovykh obrazov maloj dlitel’nosti [Predictive ability of the auditory system when moving smoothly and hopping sound images of short duration]. Zhurnal vysshej nervnoj deyatelnosti im. I. P. Pavlova — I. P. Pavlov Journal of Higher Nervous Activity, vol. 61, no. 3, pp. 293–305. (In Russian)

Roelfsema, P. R., Holtmaat, A. (2018) Control of synaptic plasticity in deep cortical networks. Nature Reviews Neurosciences, vol. 19, no. 3, pp. 166–180. https://doi.org/10.1038/nrn.2018.6 (In English)

Semenova, V. V., Petropavlovskaia, E. A., Shestopalova, L. B., Nikitin, N. I. (2020) Konstanty vospriyatiya otsrochennogo dvizheniya zvukovykh stimulov [Perception thresholds for sound stimuli with delayed motion onset]. Uspekhi fiziologicheskikh nauk, vol. 51, no. 2, pp. 55–67. https://doi.org/10.31857/S0301179820020095 (In Russian)

Shestopalova, l. B., Petropavlovskaia, E. A., Salikova, D. A. et al. (2022) Event-related potentials in conditions of auditory spatial masking in humans. Human Physiology, vol. 48, no. 6, pp. 633–643. https://doi.org/10.1134/S0362119722700098 (In English)

Varfolomeev, A. L., Starostina, L. V. (2006) Slukhovye vyzvannye potentsialy cheloveka pri illyuzornom dvizhenii zvukovogo obraza [Auditory evoked human potentials in the illusory movement of the sound image]. Rossijskij fiziologicheskij zhurnal im. I. M. Sechenova — Russian Journal of Physiology, vol. 92, no. 9, pp. 1046–1057. (In Russian)

Varyagina, O. V. (2001) Otsenka chelovekom nachal’noj tochki traektorii dvizheniya zvukovogo obraza [Human evaluation of the starting point of the motion path of the sound image]. Sensornye sistemy — Sensory Systems, vol. 15, no. 4, pp. 324–333. (In Russian)

Varyagina, O. V. (2005) Otsenka ispytuemymi dliny traektorii dvizheniya slitnogo zvukovogo obraza [Subjective estimation of the trajectory length of fused auditory image movement]. Fiziologiya cheloveka — Human Physiology, vol. 31, no. 3, pp. 32–38. (In Russian)

Yost, W. A., Hafter, E. R. (1987) Lateralization. In: W. A. Yost, G. Gourevitch (eds.). Directional hearing. New York: Springer Publ., pp. 49–84. https://doi.org/10.1007/978-1-4612-4738-8_3 (In English)

Published

2023-09-01

Issue

Section

Experimental articles