A methodological approach to study the role of memory and attention on visual perception

Authors

DOI:

https://doi.org/10.33910/2687-1270-2023-4-2-213-224

Keywords:

automated psychophysical experiment, vision, memory, attention, dual task, crowding effect, curvature, interpolation

Abstract

Computer-based experiments in visual perception studies open up great opportunities for using natural and processed images and sophisticated experimental techniques. Meanwhile, the apparent simplicity imposes additional obligations on the correct interpretation of results. We investigated popular psychophysical methods used to study the role of memory and attention in visual perception. Memory mechanisms were studied by comparing sequential and simultaneous presentation of the same stimuli in a curvature estimation task of real and interpolated lines. In contrast to sequential presentation, simultaneous presentation revealed the illusion of straightening of interpolated images and lower curvature discrimination thresholds. The role of attention was examined by comparing the performance in single and dual tasks: the subjects were asked to recognize the shape of tests and distractors located at different distances from the tests. The stimuli had low contrast and a short presentation time. We assumed that performing the double task would affect the distribution of attention and worsen test recognition. However, the double task produced no significant deterioration in the recognition of the test compared to the single task, except for the number of nonrandom errors that showed a significant decrease. The distances where the deterioration was detected greatly exceeded the generally accepted ones obtained in similar experiments using other observation conditions. To conclude, the influence of attention in both tasks was related to stronger deterioration in recognition ability when distractors were similar in shape to the tests but different in orientation. Thus, the application of different methods may reveal discrepancies in the results.

References

ЛИТЕРАТУРА

Бондарко, В. М., Данилова, М. В., Солнушкин, С. Д., Чихман, В. Н. (2014) Оценка размера зоны краудинг- эффекта при периферийном предъявлении стимулов. Физиология человека, т. 40, № 3, с. 13–21. https://doi.org/10.7868/S0131164614020040

Бондарко, В. М., Данилова, М. В., Солнушкин, С. Д., Чихман, В. Н. (2018) Различение ориентации изображений в присутствии дистракторов. Физиология человека, т. 44, № 4, с. 16–25. https://doi.org/10.1134/S0131164618040173

Бондарко, В. М., Солнушкин, С. Д., Чихман, В. Н. (2021) Оценка кривизны и архитектура Парфенона. Оптический журнал, т. 88, № 6, с. 58–67.

Бондарко, В. М., Солнушкин, С. Д., Чихман, В. Н. (2022) Оценка кривизны реальных и интерполированных изображений. Физиология человека, т. 48, № 5, с. 15–25.

Лурия, А. Р. (1973) Основы нейропсихологии. М.: Изд-во МГУ, 376 с.

Семенова, Л. К., Васильева, В. А., Цехмистренко, Т. А. (1990) Структурные преобразования коры большого мозга человека в постнатальном онтогенезе. В кн.: О. С. Адрианов, Д. А. Фарбер (ред.). Структурно-функциональная организация развивающегося мозга. Л.: Наука, с. 8–67.

Суворов, Н. Ф., Таиров, О. П. (1985) Психофизиологические механизмы избирательного внимания. Л.: Наука, 288 с.

Фарбер, Д. А., Мачинская, Р. И., Курганский, А. В., Петренко, Н. Е. (2014) Функциональная организация коры больших полушарий при подготовке к опознанию неполных изображений у детей 7–8 лет и взрослых. Физиология человека, т. 40, № 5, с. 5–13. https://doi.org/10.7868/S0131164614050038

Фарбер, Д. А., Петренко, Н. Е. (2008) Опознание фрагментарных изображений и механизмы памяти. Физиология человека, т. 34, № 1, с. 5–18.

Фарбер, Д. А., Петренко, Н. Е. (2009) Особенности опознания фрагментарных изображений в 7–8-летнем возрасте. Анализ связанных с событием потенциалов. Физиология человека, т. 35, № 3, с. 5–12.

Attneave, F. (1954) Some informational aspects of visual perception. Psychological Review, vol. 61, no. 3, pp. 183–193. https://doi.org/10.1037/h0054663

Baker, N., Garrigan, P., Kellman, P. J. (2021) Constant curvature segments as building blocks of 2D shape representation. Journal of Experimental Psychology: General, vol. 150, no. 8, pp. 1556–1580. https://doi.org/10.1037/xge0001007

Bouma, H. (1970) Interaction effects in parafoveal letter recognition. Nature, vol. 226, no. 5241, pp. 177–178. https://doi.org/10.1038/226177a0

Flom, M. C. (1991) Contour interaction and the crowding effect. Problems in Optometry, vol. 3, no. 2, pp. 237–257.

Foster, D. H., Simmons, D. R., Cook, M. J. (1993) The cue for contour-curvature discrimination. Vision Research, vol. 33, no. 3, pp. 329–341. https://doi.org/10.1016/0042-6989(93)90089-f

Habak, C., Wilkinson, F., Zakher, B., Wilson, H. R. (2004) Curvature population coding for complex shapes in human vision. Vision Research, vol. 44, no. 24, pp. 2815–2823. https://doi.org/10.1016/j.visres.2004.06.019

Kramer, D., Fahle, M. (1996) A simple mechanism for detecting low curvatures. Vision Research, vol. 36, no. 10, pp. 1411–1419. https://doi.org/10.1016/0042-6989(95)00340-1

Kunsberg, B., Zucker, S. W. (2021) From boundaries to bumps: When closed (extremal) contours are critical. Journal of Vision, vol. 21, no. 13, article 7. https://doi.org/10.1167/jov.21.13.7

Lages, M., Treisman, M. (1998) Spatial frequency discrimination: Visual long-term memory or criterion setting? Vision Research, vol. 38, no. 4, pp. 557–572. https://doi.org/10.1016/s0042-6989(97)88333-2

Levi, D. M. (2008) Crowding—an essential bottleneck for object recognition: A mini-review. Vision Research, vol. 48, no. 5, pp. 635–654. https://doi.org/10.1016/j.visres.2007.12.009

Pelli, D. G., Palomares, M., Majaj, N. J. (2004) Crowding is unlike ordinary masking: Distinguishing feature integration from detection. Journal of Vision, vol. 4, no. 12, pp. 1136–1169. https://doi.org/10.1167/4.12.12

Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, vol. 32, no. 1, pp. 3–25. https://doi.org/10.1080/00335558008248231

Strasburger, H. (2020) Seven myths on crowding and peripheral vision. i-Perception, vol. 11, no. 3, article 2041669520913052. https://doi.org/10.1177/2041669520913052

Todd, J. T., Petrov, A. A. (2022) The many facets of shape. Journal of Vision, vol. 22, no. 1, article 1. https://doi.org/10.1167/jov.22.1.1

Treisman, A. M. (1969) Strategies and models of selective attention. Psychological Review, vol. 76, no. 3, pp. 282–299. https://doi.org/10.1037/h0027242

Treisman, A. M. (1991) Search, similarity, and integration of features between and within dimensions. Journal of Experimental Psychology: Human Perception Performance, vol. 17, no. 3, pp. 652–676. https://doi.org/10.1037//0096-1523.17.3.652

Watt, R. J. (1984) Further evidence concerning the analysis of curvature in human foveal vision. Vision Research, vol. 24, no. 3, pp. 251–253. https://doi.org/10.1016/0042-6989(84)90127-5

Watt, R. J., Andrews, D. P. (1982) Contour curvature analysis: Hyperacuities in the discrimination of detailed shape. Vision Research, vol. 22, no. 4, pp. 449–460. https://doi.org/10.1016/0042-6989(82)90193-6

Whitaker, D., Latham, K., Mäkelä, P., Rovamo, J. (1993) Detection and discrimination of curvature in foveal and peripheral vision. Vision Research, vol. 33, no. 16, pp. 2215–2224. https://doi.org/10.1016/0042-6989(93)90101-2

Wilson, H. R., Richards, W. A. (1989) Mechanisms of contour curvature discrimination. Journal of the Optical Society of America A, vol. 6, no. 1, pp. 106–115. https://doi.org/10.1364/josaa.6.000106

Yildirim, F. Z., Coates, D. R., Sayim, B. (2020) Redundancy masking: The loss of repeated items in crowded peripheral vision. Journal of Vision, vol. 20, no. 4, article 14. https://doi.org/10.1167/jov.20.4.14

Yue, X., Robert, S., Ungerleider, L. G. (2020) Curvature processing in human visual cortical areas. Neurolmage, vol. 222, article 117295. https://doi.org/10.1016/j.neuroimage.2020.117295

Yuille, A. L., Liu, C. (2021) Deep nets: What have they ever done for vision? International Journal of Computer Vision, vol. 129, pp. 781–802. https://doi.org/10.1007/s11263-020-01405-z

REFERENCES

Attneave, F. (1954) Some informational aspects of visual perception. Psychological Review, vol. 61, no. 3, pp. 183–193. https://doi.org/10.1037/h0054663 (In English)

Baker, N., Garrigan, P., Kellman, P. J. (2021) Constant curvature segments as building blocks of 2D shape representation. Journal of Experimental Psychology: General, vol. 150, no. 8, pp. 1556–1580. https://doi.org/10.1037/xge0001007 (In English)

Bondarko, V. M., Danilova, M. V., Solnushkin, S. D., Chikhman, V. N. (2014) Otsenka razmera zony krauding-effekta pri periferijnom pred’yavlenii stimulov [Estimates of the size of inhibitory areas in crowding effects in periphery]. Fiziologiya cheloveka — Human Physiology, vol. 40, no. 3, pp. 13–21. https://doi.org/10.7868/S0131164614020040 (In Russian)

Bondarko, V. M., Danilova, M. V., Solnushkin, S. D., Chikhman, V. N. (2018) Razlichenie orientatsii izobrazhenij v prisutstvii distraktorov [Discrimination of images orientation in the presence of distractors]. Fiziologiya cheloveka — Human Physiology, vol. 44, no. 4, pp. 16–25. https://doi.org/10.1134/S0131164618040173 (In Russian)

Bondarko, V. M., Solnushkin, S. D., Chikhman, V. N. (2021) Otsenka krivizny i arkhitektura Parfenona [Curvature estimation and architecture of the Parthenon]. Opticheskij zhurnal, vol. 88, no. 6, pp. 58–67. (In Russian)

Bondarko, V. M., Solnushkin, S. D., Chikhman, V. N. (2022) Otsenka krivizny real’nykh i interpolirovannykh izobrazhenij [Estimation of curvature of real and interpolated images]. Fiziologiya cheloveka — Human Physiology, vol. 48, no. 5, pp. 15–25. (In Russian)

Bouma, H. (1970) Interaction effects in parafoveal letter recognition. Nature, vol. 226, no. 5241, pp. 177–178. https://doi.org/10.1038/226177a0 (In English)

Farber, D. A., Machinskaya, R. I., Kurgansky, A. V., Petrenko, N. E. (2014) Funktsional’naya organizatsiya kory bol’shikh polusharij pri podgotovke k opoznaniyu nepolnykh izobrazhenij u detej 7–8 let i vzroslykh [Functional organization of the cerebral cortex during preparation to recognition of incomplete linedrawings in 7–8 years-old children and adults]. Fiziologiya cheloveka — Human Physiology, vol. 40, no. 5, pp. 5–21. https://doi.org/10.7868/S0131164614050038 (In Russian)

Farber, D. A., Petrenko, N. E. (2008) Opoznanie fragmentarnykh izobrazhenij i mekhanizmy pamyati [Recognition of fragmentary images and mechanisms of memory]. Fiziologiya cheloveka — Human Physiology, vol. 34, no. 1, pp. 5–18. (In Russian)

Farber, D. A., Petrenko, N. E. (2009) Osobennosti opoznaniya fragmentarnykh izobrazhenij v 7–8-letnem vozraste. Analiz svyazannykh s sobytiem potentsialov [Peculiarities of recognition of fragmentary images at the age of 7–8 years. Analysis of event-related potentials]. Fiziologiya cheloveka — Human Physiology, vol. 35, no. 3, pp. 5–12. (In Russian)

Flom, M. C. (1991) Contour interaction and the crowding effect. Problems in Optometry, vol. 3, no. 2, pp. 237–257. (In English)

Foster, D. H., Simmons, D. R., Cook, M. J. (1993) The cue for contour-curvature discrimination. Vision Research, vol. 33, no. 3, pp. 329–341. https://doi.org/10.1016/0042-6989(93)90089-f (In English)

Habak, C., Wilkinson, F., Zakher, B., Wilson, H. R. (2004) Curvature population coding for complex shapes in human vision. Vision Research, vol. 44, no. 24, pp. 2815–2823. https://doi.org/10.1016/j.visres.2004.06.019 (In English)

Kramer, D., Fahle, M. (1996) A simple mechanism for detecting low curvatures. Vision Research, vol. 36, no. 10, pp. 1411–1419. https://doi.org/10.1016/0042-6989(95)00340-1 (In English)

Kunsberg, B., Zucker, S. W. (2021) From boundaries to bumps: When closed (extremal) contours are critical. Journal of Vision, vol. 21, no. 13, article 7. https://doi.org/10.1167/jov.21.13.7 (In English)

Lages, M., Treisman, M. (1998) Spatial frequency discrimination: Visual long-term memory or criterion setting? Vision Research, vol. 38, no. 4, pp. 557–572. https://doi.org/10.1016/s0042-6989(97)88333-2 (In English)

Levi, D. M. (2008) Crowding—an essential bottleneck for object recognition: A mini-review. Vision Research, vol. 48, no. 5, pp. 635–654. https://doi.org/10.1016/j.visres.2007.12.009 (In English)

Luria, A. R. (1973) Osnovy nejropsikhologii [Fundamentals of neuropsychology]. Moscow: Moscow State University Publ., 376 p. (In Russian)

Pelli, D. G., Palomares, M., Majaj, N. J. (2004) Crowding is unlike ordinary masking: Distinguishing feature integration from detection. Journal of Vision, vol. 4, no. 12, pp. 1136–1169. https://doi.org/10.1167/4.12.12 (In English)

Posner, M. I. (1980) Orienting of attention. Quarterly Journal of Experimental Psychology, vol. 32, no. 1, pp. 3–25. https://doi.org/10.1080/00335558008248231 (In English)

Semenova, L. K., Vasil’eva, V. A., Tsekhmistrenko, T. A. (1990) Strukturnye preobrazovaniya kory bol’shogo mozga cheloveka v postnatal’nom ontogeneze [Structural transformations of the human cerebral cortex in postnatal ontogenesis]. In: O. S. Adrianov, D. A. Farber (eds.). Strukturno-funktsional’naya organizatsiya razvivayushchegosya mozga [Structural and functional organization of the developing brain]. Leningrad: Nauka Publ., pp. 8–67. (In Russian)

Strasburger, H. (2020) Seven myths on crowding and peripheral vision. i-Perception, vol. 11, no. 3, article 2041669520913052. https://doi.org/10.1177/2041669520913052 (In English)

Suvorov, N. F., Tairov, O. P. (1985) Psikhofiziologicheskie mekhanizmy izbiratel’nogo vnimaniya [Psychophysiological mechanisms of selective attention]. Leningrad: Nauka Publ., 288 p. (In Russian)

Todd, J. T., Petrov, A. A. (2022) The many facets of shape. Journal of Vision, vol. 22, no. 1, article 1. https://doi.org/10.1167/jov.22.1.1 (In English)

Treisman, A. M. (1969) Strategies and models of selective attention. Psychological Review, vol. 76, no. 3, pp. 282–299. https://doi.org/10.1037/h0027242 (In English)

Treisman, A. M. (1991) Search, similarity, and integration of features between and within dimensions. Journal of Experimental Psychology: Human Perception Performance, vol. 17, no. 3, pp. 652–676. https://doi.org/10.1037//0096-1523.17.3.652 (In English)

Watt, R. J. (1984) Further evidence concerning the analysis of curvature in human foveal vision. Vision Research, vol. 24, no. 3, pp. 251–253. https://doi.org/10.1016/0042-6989(84)90127-5 (In English)

Watt, R. J., Andrews, D. P. (1982) Contour curvature analysis: Hyperacuities in the discrimination of detailed shape. Vision Research, vol. 22, no. 4, pp. 449–460. https://doi.org/10.1016/0042-6989(82)90193-6 (In English)

Whitaker, D., Latham, K., Mäkelä, P., Rovamo, J. (1993) Detection and discrimination of curvature in foveal and peripheral vision. Vision Research, vol. 33, no. 16, pp. 2215–2224. https://doi.org/10.1016/0042-6989(93)90101-2 (In English)

Wilson, H. R., Richards, W. A. (1989) Mechanisms of contour curvature discrimination. Journal of the Optical Society of America A, vol. 6, no. 1, pp. 106–115. https://doi.org/10.1364/josaa.6.000106 (In English)

Yildirim, F. Z., Coates, D. R., Sayim, B. (2020) Redundancy masking: The loss of repeated items in crowded peripheral vision. Journal of Vision, vol. 20, no. 4, article 14. https://doi.org/10.1167/jov.20.4.14 (In English)

Yue, X., Robert, S., Ungerleider, L. G. (2020) Curvature processing in human visual cortical areas. Neurolmage, vol. 222, article 117295. https://doi.org/10.1016/j.neuroimage.2020.117295 (In English)

Yuille, A. L., Liu, C. (2021) Deep nets: What have they ever done for vision? International Journal of Computer Vision, vol. 129, pp. 781–802. https://doi.org/10.1007/s11263-020-01405-z (In English)

Published

2023-09-01

Issue

Section

Experimental articles