Impact of interplanetary spaceflight factors on the functions of central nervous system: Simulation experiments on primates

Authors

DOI:

https://doi.org/10.33910/2687-1270-2023-4-4-401-414

Keywords:

interplanetary spaceflights, rhesus monkey, cognitive functions, ionizing radiation, antiorthostatic hypokinesia, monoamine metabolism

Abstract

Development of biomedical support programmes for interplanetary spaceflights requires a conceptual review of radiation-related risks: from the estimation of long-term stochastic consequences as different from those in orbital flights, to the assessment of risks of functional disorders in the central nervous system. This requires a series of neurobiological research with ground experiments on small laboratory animals as well as primates. In interplanetary missions, the so-called ergonomic risk comes to the fore. It is associated with possible violations of spacecraftoperator activity directly during the flight. Studies in primates, in particular, simulation of basic elements of operator activity, are instrumental in the assessment of risk of possible violations and extrapolation of the obtained data to humans. This article describes state of the art and provides a review of experimental research that simulates interplanetary radiation on primates. Research on the comprehensive impact of different types of radiation and simulated microgravity mainly focuses on cognitive functions of primates and monoamine exchange. The exposure of animals with unbalanced neural processes and excitation predominance of excitation to the combination of gamma radiation and/or carbon ions as well as simulated hypogravity has been shown to cause significant cognitive impairment. The reported study demonstrates that the typological features of higher nervous activity play a key role in how central nervous system responds to simulated impacts. For instance, in operator activity tests, primates with a strong and balanced type of higher nervous activity effective in both success ratio and number of attempts during and after the exposure, while animals of an unbalanced type show a strong decline in success ratio and a bigger number of attempts. Neurochemical studies indirectly suggest a leading role of the dopaminergic brain system in mediator exchange disorders in the brain.

References

ЛИТЕРАТУРА

Беляева, А. Г., Штемберг, А. С., Носовский, А. М. и др. (2017) Воздействие высокоэнергетических протонов и ионов углерода 12С на когнитивные функции обезьян и содержание моноаминов и их метаболитов в периферической крови. Нейрохимия, т. 34, № 2, с. 168–176. https://doi.org/10.7868/S1027813317010034

Большев, Л. Н., Смирнов, Н. В. (1983) Таблицы математической статистики. М.: Наука, 416 с.

Григорьев, А. И., Красавин, Е. А., Островский, М. А. (2013) К оценке риска биологического действия галактических тяжелых ионов в условиях межпланетного полета. Российский физиологический журнал им. И. М. Сеченова, т. 99, № 3, с. 273–280.

Лебединский, А. В., Нахильницкая, З. Н. (1960) Влияние ионизирующих излучений на нервную систему. М.: Атомиздат, 188 с.

Ливанов, М. Н. (1962) Некоторые проблемы действия ионизирующей радиации на нервную систему. М.: Медгиз, 196 с.

Лившиц, Н. Н. (1961) Влияние ионизирующих излучений на функции центральной нервной системы. М.: Изд-во АН СССР, 180 с.

Матвеева, М. И., Штемберг, А. С., Тимошенко, Г. Н. и др. (2013) Влияние облучения ионами углерода 12С на обмен моноаминов в некоторых структурах мозга крыс. Нейрохимия, т. 30, № 4, с. 343–348. https://doi.org/10.7868/s1027813313040067

Минаев, П. Ф. (1962) Влияние ионизирующих излучений на центральную нервную систему. М.: Изд-во АН СССР, 129 с.

Феллер, В. (1984) Введение в теорию вероятностей и ее приложения: В 2 т. М.: Мир.

Шеффе, Г. (1980) Дисперсионный анализ. М.: Наука, 512 с.

Штемберг, А. С. (1987) Роль индивидуальных типологических особенностей высшей нервной деятельности в формировании и радиационной устойчивости упроченных двигательно-оборонительных условных рефлексов у крыс. Известия АН СССР. Cерия биологическая, № 4, с. 547–557.

Belyaeva, A. G., Kudrin, V. S., Koshlan, I. V. et al. (2021) Effects of combined exposure to modeled radiation and gravitation factors of the interplanetary flight: Monkeys’ cognitive functions and the content of monoamines and their metabolites; cytogenetic changes in peripheral blood lymphocytes. Life Sciences in Space Research, vol. 30, pp. 45–54. https://doi.org/10.1016/j.lssr.2021.05.004

Blair, W. C. (1958) The effects of cranial X radiation on maze acquisition in rats. Journal of Comparative and Physiological Psychology, vol. 51, no. 2, pp. 175–177. https://doi.org/10.1037/h0048604

Britten, R. A., Davis, L. K., Johnson, A. M. et al. (2012) Low (20 CGy) doses of 1 GeV/u 56Fe-particle radiation lead to a persistent reduction in the spatial learning ability of rats. Radiation Research, vol. 177, no. 2, pp. 146–151. https://doi.org/10.1667/RR2637.1

Harlow, H. F., Schrier, A. M., Simons, D. G. (1956) Exposure of primates to cosmic radiation above 90,000 feet. Journal of Comparative and Physiological Psychology, vol. 49, no. 2, pp. 195–200. https://doi.org/10.1037/h0041001

Kokhan, V. S., Matveeva, M. I., Bazyan, A. S. et al. (2017) Combined effects of antiorthostatic suspension and ionizing radiation on the behaviour and neurotransmitters changes in different brain structures of rats. Behavioural Brain Research, vol. 320, pp. 473–483. https://doi.org/10.1016/j.bbr.2016.10.032

Machida, M., Lonart, G., Britten, R. A. (2010) Low (60 cGy) doses of 56Fe HZE-particle radiation lead to a persistent reduction in the glutamatergic readily releasable pool in rat hippocampal synaptosomes. Radiation Research, vol. 174, no. 5, pp. 618–623. https://doi.org/10.1667/RR1988.1

Rabin, B. M., Joseph, J. A., Shukitt-Hale, B. (2004) Heavy particle irradiation, neurochemistry and behavior: Thresholds, dose-response curves and recovery of function. Advances in Space Research, vol. 33, no. 8, pp. 1330– 1333. https://doi.org/10.1016/j.asr.2003.09.051

Rabin, B. M., Joseph, J. A., Shukitt-Hale, B. A. (2005) A longitudinal study of operant responding in rats irradiated when 2 months old. Radiation Research, vol. 164, no. 4, pp. 552–555. https://doi.org/10.1667/rr3349.1

Riopelle, A. J. (1982) Some behavioral effects of ionizing radiation on primates. In: T. J. Haley (ed.). Response of the nervous system to ionizing radiation. New York; London: Academic Press, pp. 719–728.

Shtemberg, A. S., Kokhan, V. S., Kudrin, V. S. et al. (2015) The effect of high-energy protons in Bragg Peak on the exchange of monoamines in some brain structures. Neurochemical Journal, vol. 9, no. 1, pp. 66–72. https://doi.org/10.1134/S1819712415010109

Shtemberg, A. S., Lebedeva-Georgievskaya, K. B., Matveeva, M. I. et al. (2014) Effect of space flight factors simulated in ground-bazed experiments on the behavior, discriminant learning, and exchange of monoamines in different brain structures of rats. Biology Bulletin, vol. 41, no. 2, pp. 161–167. https://doi.org/10.1134/S1062359014020095

Shukitt-Hale, B., Casadesus, G., McEwen, J. J. et al. (2000) Spatial learning and memory deficits induced by exposure to iron-56-particle radiation. Radiation Research, vol. 154, no. 1, pp. 28–33. https://doi.org/10.1667/0033-7587(2000)154[0028:slamdi]2.0.co;2

Washburn, D. A., Rumbaugh, D. M., Richardson, W. K. et al. (2000) PTS performance by flight- and control-group macaques. Journal of Gravitational Physiology, vol. 7, no. 1, pp. S89–S94. https://pubmed.ncbi.nlm.nih.gov/11543471

REFERENCES

Belyaeva, A. G., Kudrin, V. S., Koshlan, I. V. et al. (2021) Effects of combined exposure to modeled radiation and gravitation factors of the interplanetary flight: Monkeys’ cognitive functions and the content of monoamines and their metabolites; cytogenetic changes in peripheral blood lymphocytes. Life Sciences in Space Research, vol. 30, pp. 45–54. https://doi.org/10.1016/j.lssr.2021.05.004 (In English)

Belyaeva, A. G., Shtemberg, A. S., Nosovskii, A. M. (2017) Vozdejstvie vysokoenergeticheskikh protonov i ionov ugleroda 12С na kognitivnye funktsii obez’yan i soderzhanie monoaminov i ikh metabolitov v perifericheskoj krovi [The effects of high-energy protons and carbon ions 12C on the cognitive function and the content of monoamines and their metabolites in peripheral blood in monkeys]. Nejrokhimiya — Neurochemical Journal, vol. 34, no. 2, pp. 168–176. https://doi.org/10.7868/S1027813317010034 (In Russian)

Blair, W. C. (1958) The effects of cranial X radiation on maze acquisition in rats. Journal of Comparative and Physiological Psychology, vol. 51, no. 2, pp. 175–177. https://doi.org/10.1037/h0048604 (In English)

Bol’shev, L. N., Smirnov, N. V. (1983) Tablitsy matematicheskoj statistiki [Mathematical statistics tables]. Moscow: Nauka Publ., 416 p. (In Russian)

Britten, R. A., Davis, L. K., Johnson, A. M. et al. (2012) Low (20 CGy) doses of 1 GeV/u 56Fe-particle radiation lead to a persistent reduction in the spatial learning ability of rats. Radiation Research, vol. 177, no. 2, pp. 146–151. https://doi.org/10.1667/RR2637.1 (In English)

Feller, W. (1984) Vvedenie v teoriyu veroyatnostej i ee prilozheniya: V 2 t. [An introduction to probability theory and its applications: In 2 vols.]. Moscow: Mir Publ. (In Russian)

Grigor’ev, A. I., Krasavin, E. A., Ostrovskij, M. A. (2013) K otsenke riska biologicheskogo dejstviya galakticheskikh tyazhelykh ionov v usloviyakh mezhplanetnogo poleta [Galactic heave charged particles damaging effect on biological structures]. Rossijskij fiziologicheskij zhurnal im. I. M. Sechenova — Russian Journal of Physiology, vol. 99, no. 3, pp. 273–280. (In Russian)

Harlow, H. F., Schrier, A. M., Simons, D. G. (1956) Exposure of primates to cosmic radiation above 90,000 feet. Journal of Comparative and Physiological Psychology, vol. 49, no. 2, pp. 195–200. https://doi.org/10.1037/h0041001 (In English)

Kokhan, V. S., Matveeva, M. I., Bazyan, A. S. et al. (2017) Combined effects of antiorthostatic suspension and ionizing radiation on the behaviour and neurotransmitters changes in different brain structures of rats. Behavioural Brain Research, vol. 320, pp. 473–483. https://doi.org/10.1016/j.bbr.2016.10.032 (In English)

Lebedinskij, A. V., Nakhil’nitskaya, Z. N. (1960) Vliyanie ioniziruyushchikh izluchenij na nervnuyu sistemu [Effects of ionizing radiation on the nervous system]. Moscow: Atomizdat Publ., 188 p. (In Russian)

Livanov, M. N. (1962) Nekotorye problemy dejstviya ioniziruyushchej radiatsii na nervnuyu sistemu [Some problems connected with the action of ionizing radiation on the nervous system]. Moscow: Medgiz Publ., 196 p. (In Russian)

Livshits, N. N. (1961) Vliyanie ioniziruyushchikh izluchenij na funktsii nervnoj sistemy [Effects of ionizing radiation on the functions of the central nervous system]. Moscow: Academy of Sciences of the USSR Publ., 180 p. (In Russian)

Machida, M., Lonart, G., Britten, R. A. (2010) Low (60 cGy) doses of 56Fe HZE-particle radiation lead to a persistent reduction in the glutamatergic readily releasable pool in rat hippocampal synaptosomes. Radiation Research, vol. 174, no. 5, pp. 618–623. https://doi.org/10.1667/RR1988.1 (In English)

Matveeva, M. I., Shtemberg, A. S., Timoshenko, G. N. (2013) Vliyanie oblucheniya ionami ugleroda 12С na obmen monoaminov v nekotorykh strukturakh mozga krysy [The effects of irradiation by 12С carbon ions on monoamine exchange in several rat brain structures]. Nejrokhimiya — Neurochemical Journal, vol. 30, no. 4, pp. 343–348. https://doi.org/10.7868/s1027813313040067 (In Russian)

Minaev, P. F. (1962) Vliyanie ioniziruyushchikh izluchenij na nervnuyu sistemu [Effects of ionizing radiation on the central nervous system]. Moscow: Academy of Sciences of the USSR Publ., 129 p. (In Russian)

Rabin, B. M., Joseph, J. A., Shukitt-Hale, B. (2004) Heavy particle irradiation, neurochemistry and behavior: Thresholds, dose-response curves and recovery of function. Advances in Space Research, vol. 33, no. 8, pp. 1330– 1333. https://doi.org/10.1016/j.asr.2003.09.051 (In English)

Rabin, B. M., Joseph, J. A., Shukitt-Hale, B. A. (2005) A longitudinal study of operant responding in rats irradiated when 2 months old. Radiation Research, vol. 164, no. 4, pp. 552–555. https://doi.org/10.1667/rr3349.1 (In English)

Riopelle, A. J. (1982) Some behavioral effects of ionizing radiation on primates. In: T. J. Haley (ed.). Response of the nervous system to ionizing radiation. New York; London: Academic Press, pp. 719–728. (In English)

Scheffe, H. (1980) Dispersionnij analiz [Dispersion analysis]. Moscow: Nauka Publ., 512 p. (In Russian)

Shtemberg, A. S. (1987) Rol’ individual’nykh tipologicheskikh osobennostej vysshej nervnoj deyatel’nosti v formirovanii i radiatsionnoj ustojchivosti uprochennykh dvigatel’no-oboronitel’nykh uslovnykh refleksov u krys [The role of the individual typological characteristics of rats higher nervous activity in the formation and radiation stability of strengthened motor-defensive conditional reflexes]. Izvestiya Akademii Nauk SSSR. Seriya biologicheskaya — Biology Bulletin, no. 4, pp. 547–557. (In Russian)

Shtemberg, A. S., Kokhan, V. S., Kudrin, V. S. et al. (2015) The effect of high-energy protons in Bragg Peak on the exchange of monoamines in some brain structures. Neurochemical Journal, vol. 9, no. 1, pp. 66–72. https://doi. org/10.1134/S1819712415010109 (In English)

Shtemberg, A. S., Lebedeva-Georgievskaya, K. B., Matveeva, M. I. et al. (2014) Effect of space flight factors simulated in ground-bazed experiments on the behavior, discriminant learning, and exchange of monoamines in different brain structures of rats. Biology Bulletin, vol. 41, no. 2, pp. 161–167. https://doi.org/10.1134/S1062359014020095 (In English)

Shukitt-Hale, B., Casadesus, G., McEwen, J. J. et al. (2000) Spatial learning and memory deficits induced by exposure to iron-56-particle radiation. Radiation Research, vol. 154, no. 1, pp. 28–33. https://doi.org/10.1667/0033-7587(2000)154[0028:slamdi]2.0.co;2 (In English)

Washburn, D. A., Rumbaugh, D. M., Richardson, W. K. et al. (2000) PTS performance by flight- and control-group macaques. Journal of Gravitational Physiology, vol. 7, no. 1, pp. S89–S94. https://pubmed.ncbi.nlm.nih.gov/11543471 (In English)

Published

2023-12-29

Issue

Section

Reviews