Effects of electromagnetic millimeter waves on the neuron activity of the spinal trigeminal nucleus of the rat
DOI:
https://doi.org/10.33910/2687-1270-2020-1-1-61-71Keywords:
electromagnetic millimeter waves, spinal trigeminal nucleus, neuronal activity, migraineAbstract
The study examined the effects of continuous low-intensity electromagnetic millimeter waves (MMW; frequency 40 GHz, power density of 0.04 mW/cm2) on ongoing firing of the spinal trigeminal nucleus (STN) neurons and their responses to the electrical stimulation of the dura mater in neurophysiological experiments on anesthetized rats. It is known that local exposure of MMW to certain areas of the skin can have a systemic therapeutic effect in the treatment of various pathologies. In particular, it concerns the use of MMW to treat headache of different genesis, with migraine being the most common form. The mechanisms of migraine are not clear, but it is known that the STN plays a key role in the migraine pathogenesis, providing the primary processing of pain signals from the cranial vessels as well as the transmission of these signals to overlying brain structures, in particular, to the thalamus. Recently, it has been reported that the frequency-modulated MMW causes short-term inhibitory changes in both the background activity of STN neurons and their responses to electrical stimulation of the dura mater. We assumed that the use of MMW in the unmodulated mode will allow to increase the duration of the MMW inhibitory effect on the background and evoked activity of STN neurons and thereby confirm potential antinociceptive action of MMW in migraine. The results of the present study have showed that the exposure of the STN neurons’ cutaneous receptive fields to unmodulated MMW is accompanied by prolonged cumulative inhibition of both the background activity of these neurons and their dural electrostimulation-evoked responses. The data allow considering these effects as an evindence in favour of potential antimigraine action of a continuous low-intensity MMW. It is proposed that the action can be based on the activation of nervous and immune processes in the skin, which, through a chain of neuronal mechanisms, can lead to a decrease in the excitability of STN neurons involved in the pathogenesis of migraine.
References
ЛИТЕРАТУРА
Амелин, А. В., Игнатов, Ю. Д., Скоромец, А. А., Соколов, А. Ю. (2011) Мигрень. Патогенез, клиника, фармакотерапия: руководство для врачей. М.: МедПресс-Информ, 256 c.
Бецкий, О. В., Кислов, В. В., Лебедева, Н. Н. (2004) Миллиметровые волны и живые системы. М.: САЙНС-ПРЕСС, 272 c.
Джелдубаева, Э. Р., Чуян, Е. Н. (2012) Антиноцицептивное действие милимметрового излучения, обзор, экспериментальные данные, обобщение результатов. Саарбрюккен: Palmarium Academic Publishing, 168 c.
Медведев, Д. С., Молодцова, И. Д., Янова, О. А. (2013) Нейроиммуноэндокринные аспекты влияния низкоинтенсивного электромагнитного излучения миллиметрового диапазона на организм человека при различной возраст-ассоциированной патологии. Фундаментальные исследования, № 9–5, c. 866–870.
Пантелеев, С. С. Соколов, A. Ю., Картус, Д. Е. и др. (2004) Response of the spinal trigeminal nucleus neurons to electric stimulation of the rat dura mater. Российский физиологический журнал им. И. М. Сеченова, т. 90, № 1, c. 3–10.
Сиваченко, И. Б., Медведев, Д. С., Молодцова, И. Д. и др. (2015) Эффект электромагнитного излучения миллиметрового диапазона на экспериментальной модели мигрени. Бюллетень экспериментальной биологии и медицины, т. 160, № 10, c. 420–424.
Akerman, S., Holland, P. R., Hoffmann, J. (2013) Pearls and pitfalls in experimental in vivo models of migraine: Dural trigeminovascular nociception. Cephalalgia, vol. 33, no. 8, pp. 577–592. DOI: 10.1177/0333102412472071
Akerman, S., Romero-Reyes, M., Holland, P. R. (2017) Current and novel insights into the neurophysiology of migraine and its implications for therapeutics. Pharmacology and Therapeutics, vol. 172, pp. 151–170. PMID: 27919795. DOI: 10.1016/j.pharmthera.2016.12.005
Alekseev, S. I., Ziskin, M. C. (2003) Local heating of human skin by millimeter waves: A kinetics study. Bioelectromagnetics, vol. 24, no. 8, pp. 571–581. DOI: 10.1002/bem.10137
Alekseev, S. I., Ziskin, M. C. (2007) Human skin permittivity determined by millimeterwave reflection measurements. Bioelectromagnetics, vol. 28, no. 5, pp. 331–339. DOI: 10.1002/bem.20308
Alekseev, S. I., Ziskin, M. C. (2009) Millimeter-wave absorption by cutaneous blood vessels: A computational study. IEEE Transactions on biomedical engineering, vol. 56, no. 10, pp. 2380–2388. DOI: 10.1109/TBME.2009.2024692
Alekseev, S. I., Gordiienko, O. V., Ziskin, M. C. (2008) Reflection and penetration depth of millimeter waves in murine skin. Bioelectromagnetics, vol. 29, no. 5, pp. 340–344. DOI: 10.1002/bem.20401
Alekseev, S. I., Radzievsky, A. A., Szabo, I., Ziskin, M. C. (2005) Local heating of human skin by millimeter waves: Effect of blood flow. Bioelectromagnetics, vol. 26, no. 6, pp. 489–501. DOI: 10.1002/bem.20118
Burstein, R., Yamamura, H., Malick, A., et al. (1998) Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. Journal of Neurophysiology. vol. 79, no. 2, pp. 964–982. DOI: 10.1152/jn.1998.79.2.964
Edvinsson, L., Villalon, C. M., MaassenVanDenBrink A. (2012) Basic mechanisms of migraine and its acute treatment. Pharmacology and Therapeutics, vol. 136, no. 3, pp. 319–333. DOI: 10.1016/j.pharmthera.2012.08.011
Erdener, S. E., Dalkara, T. (2014) Modelling headache and migraine and its pharmacological manipulation. British Journal of Pharmacology, vol. 171, no. 20, pp. 4575–4594. DOI: 10.1111/bph.12651
Logani, M. K., Anga, A., Szabo, I. et al. (2002) Effect of millimeterwaves on cyclophosphamide induced suppression of the immune system. Bioelectromagnetics, vol. 23, no. 8, pp. 614–621. DOI: 10.1002/bem.10058
Logani, M. K, Szabo, I., Makar, V. et al. (2006) Effect of millimeterwave irradiation on tumor metastasis. Bioelectromagnetics, vol. 27, no. 4, pp. 258–264. DOI: 10.1002/bem.20208
Lyubashina, O. A., Panteleev, S. S., Sokolov, A. Y. (2017) Inhibitory effect of high-frequency greater occipital nerve electrical stimulation on trigeminovascular nociceptive processing in rats. Journal Neural Transmission (Vienna), vol. 124, no. 2, pp. 171–183. DOI: 10.1007/s00702-016-1626-2
Messlinger, K. (2009) Migraine: Where and how does the pain originate? Experimental Brain Research, vol. 196, no. 1, pp. 179–193. DOI: 10.1007/s00221-009-1756-y
Misery, L. (1997) Skin, immunity and the nervous system. British Journal of Dermatology, vol. 137, no. 6, pp. 843–850. DOI: 10.1046/j.1365-2133.1997.19762090.x
Pakhomov, A. G., Akyel, Y., Pakhomova, O. N. et al. (1998) Current state and implications of research on biological effects of millimeter waves: A review of the literature. Bioelectromagnetics, vol. 19, no. 7, pp. 393–413. PMID: 9771583.
Partyla, T., Hacker, H., Edinger, H. et al. (2017) Remote effects of electromagnetic millimeter waves on experimentally induced cold pain: A double-blinded crossover investigation in healthy volunteers. Anesthesia and Analgesia, vol. 124, no. 3, pp. 980–985. DOI: 10.1213/ANE.0000000000001657
Paxinos, G., Watson C. (1998) The rat brain in stereotaxic coordinates. London: Academic Press, 456 p.
Radzievsky, A. A., Rojavin, M. A., Cowan, A. et al. (2000) Hypoalgesic effect of millimeter waves in mice: Dependence on the site of exposure. Life Sciences, vol. 66, no. 21, pp. 2101–2111. DOI: 10.1016/s0024-3205(00)00536-1
Radzievsky, A. A., Rojavin, M. A., Cowan, A. et al. (2001) Peripheral neural system involvement in hypoalgesic effect of electromagnetic millimeter waves. Life Sciences, vol. 68, no. 10, pp. 1143–1151. DOI: 10.1016/s0024-3205(00)01016-x
Radzievsky, A. A., Gordiienko, O. V., Szabo, I. et al. (2004) Millimeter wave-induced suppression of B16 F10 melanoma growth in mice: Involvement of endogenous opioids. Bioelectromagnetics, vol. 25, no. 6, pp. 466–473. DOI: 10.1002/bem.20018
Radzievsky, A. A., Gordiienko, O. V., Alekseev, S. et al. (2008) Electromagnetic millimeter wave induced hypoalgesia: Frequency dependence and involvement of endogenous opioids. Bioelectromagnetics, vol. 29, no. 4, pp. 284–295. DOI: 10.1002/bem.20389
Rojavin, M. A., Radzievsky, A. A., Cowan, A., Ziskin, M. C. (2000) Pain relief caused by millimeter waves in mice: Results of cold water tail flick tests. International Journal of Radiation. Biology, vol. 76, no. 4, pp. 575–579. PMID: 10815639.
Rojavin, M. A., Ziskin, M. C. (1998) Medical application of millimetre waves. Quarterly Journal of Medicine, vol. 91, no. 1, pp. 57–66. DOI: 10.1093/qjmed/91.1.57
Safronova, V. G., Gabdoulkhakova, A. G., Santalov, B. F. (2002) Immunomodulating action of low intensity millimeter waves on primed neutrophils. Bioelectromagnetics, vol. 23, no. 8, pp. 599–606. DOI: 10.1002/bem.10056
Shapiro, M. G., Priest, M. F., Siegel, P. H., Bezanilla, F. (2013) Thermal mechanisms of millimeter wave stimulation of excitable cells. Biophysical Journal, vol. 104, no. 12, pp. 2622–2628. DOI: 10.1016/j.bpj.2013.05.014
Sokolov, A. Y, Lyubashina O. A, Panteleev S. S, Chizh, B. A. (2010) Neurophysiological markers of central sensitisation in the trigeminal pathway and their modulation by the cyclo-oxygenase inhibitor ketorolac. Cephalalgia, vol. 30, no. 10, pp. 1241–1249. DOI: 10.1177/0333102410365104
Storer, R. J., Akerman, S., Goadsby, P. J. (2003) Characterization of opioid receptors that modulate nociceptive neurotransmission in the trigeminocervical complex. British Journal of Pharmacology, vol. 138, no. 2, pp. 317–324. DOI: 10.1038/sj.bjp.0705034
Usichenko, T. I., Edinger, H., Gizhko, V. V. et al. (2006) Low-intensity electromagnetic millimeter waves for pain therapy. Evidence-Based Complementary and Alternative Medicine, vol. 3, no. 2, pp. 201–207. DOI: 10.1093/ecam/nel012
Williamson, D. J., Shepheard, S. L., Cook, D. A. et al. (2001) Role of opioid receptors in neurogenic dural vasodilation and sensitization of trigeminal neurones in anaesthetized rats. British Journal of Pharmacology, vol. 133, no. 6, pp. 807–814. DOI: 10.1038/sj.bjp.0704136
Yip, Y. B., Tse, H. M., Wu, K. K. (2007) An experimental study comparing the effects of combined transcutaneous acupoint electrical stimulation and electromagnetic millimeter waves for spinal pain in Hong Kong. Complementary Therapies in Clinical Practice, vol. 13, no. 1, pp. 4–14. DOI: 10.1016/j.ctcp.2006.08.002
Zhadobov, M., Alekseev, S. I., Drean, Y., L. et al. (2015) Millimeter waves as a source of selective heating of skin. Bioelectromagnetics, vol. 36, no. 6, pp. 464–475. DOI: 10.1002/bem.21929
Ziskin, M. C. (2013) Millimeter waves: Acoustic and electromagnetic. Bioelectromagnetics, vol. 34, no. 1, pp. 3–14. DOI: 10.1002/bem.21750
REFERENCES
Akerman, S., Holland, P. R., Hoffmann, J. (2013) Pearls and pitfalls in experimental in vivo models of migraine: Dural trigeminovascular nociception. Cephalalgia, vol. 33, no. 8, pp. 577–592. DOI: 10.1177/0333102412472071 (In English)
Akerman, S., Romero-Reyes, M., Holland, P. R. (2017) Current and novel insights into the neurophysiology of migraine and its implications for therapeutics. Pharmacology and Therapeutics, vol. 172, pp. 151–170. PMID: 27919795. DOI: 10.1016/j.pharmthera.2016.12.005 (In English)
Alekseev, S. I., Ziskin, M. C. (2003) Local heating of human skin by millimeter waves: A kinetics study. Bioelectromagnetics, vol. 24, no. 8, pp. 571–581. DOI: 10.1002/bem.10137 (In English)
Alekseev, S. I., Ziskin, M. C. (2007) Human skin permittivity determined by millimeterwave reflection measurements. Bioelectromagnetics, vol. 28, no. 5, pp. 331–339. DOI: 10.1002/bem.20308 (In English)
Alekseev, S. I., Ziskin, M. C. (2009) Millimeter-wave absorption by cutaneous blood vessels: A computational study. IEEE Transactions on biomedical engineering, vol. 56, no. 10, pp. 2380–2388. DOI: 10.1109/TBME.2009.2024692 (In English)
Alekseev, S. I., Gordiienko, O. V., Ziskin, M. C. (2008) Reflection and penetration depth of millimeter waves in murine skin. Bioelectromagnetics, vol. 29, no. 5, pp. 340–344. DOI: 10.1002/bem.20401 (In English)
Alekseev, S. I., Radzievsky, A. A., Szabo, I., Ziskin, M. C. (2005) Local heating of human skin by millimeter waves: Effect of blood flow. Bioelectromagnetics, vol. 26, no. 6, pp. 489–501. DOI: 10.1002/bem.20118 (In English)
Amelin, A. V., Ignatov, Yu. D., Skoromets, A. A., Sokolov, A. Yu. (2011) Migren’. Patogenez, klinika, farmakoterapiya: rukovodstvo dlya vrachej [Migraine. Pathogenesis, clinic, pharmacotherapy: A guide for physicians]. Moscow: MedPress-Inform Publ., 256 p. (In Russian)
Betskiy, O. V., Kislov, V. V., Lebedeva, N. N. (2004) Millimetrovye volny i zhivye sistemy [Millimeter waves and living systems]. Moscow: SAJNS-PRESS Publ., 272 p. (In Russian)
Burstein, R., Yamamura, H., Malick, A., et al. (1998) Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. Journal of Neurophysiology. vol. 79, no. 2, pp. 964–982. DOI: 10.1152/jn.1998.79.2.964 (In English)
Dzheldubayeva, E. R., Chuyan, Ye. N. (2012) Antinotsitseptivnoe dejstvie milimmetrovogo izlucheniya, obzor, eksperimental’nye dannye, obobshchenie rezul’tatov [Antinociceptive effect of millimeter radiation, review, experimental data, summary of results]. Saarbrucken: Palmarium Academic Publishing, 168 p. (In Russian)
Edvinsson, L., Villalon, C. M., MaassenVanDenBrink A. (2012) Basic mechanisms of migraine and its acute treatment. Pharmacology and Therapeutics, vol. 136, no. 3, pp. 319–333. DOI: 10.1016/j.pharmthera.2012.08.011 (In English)
Erdener, S. E., Dalkara, T. (2014) Modelling headache and migraine and its pharmacological manipulation. British Journal of Pharmacology, vol. 171, no. 20, pp. 4575–4594. DOI: 10.1111/bph.12651 (In English)
Logani, M. K., Anga, A., Szabo, I. et al. (2002) Effect of millimeterwaves on cyclophosphamide induced suppression of the immune system. Bioelectromagnetics, vol. 23, no. 8, pp. 614–621. DOI: 10.1002/bem.10058 (In English)
Logani, M. K, Szabo, I., Makar, V. et al. (2006) Effect of millimeterwave irradiation on tumor metastasis. Bioelectromagnetics, vol. 27, no. 4, pp. 258–264. DOI: 10.1002/bem.20208 (In English)
Lyubashina, O. A., Panteleev, S. S., Sokolov, A. Y. (2017) Inhibitory effect of high-frequency greater occipital nerve electrical stimulation on trigeminovascular nociceptive processing in rats. Journal Neural Transmission (Vienna), vol. 124, no. 2, pp. 171–183. DOI: 10.1007/s00702-016-1626-2 (In English)
Medvedev, D. S., Molodtsova, I. D., Yanova, O. A. (2013) Nejroimmunoendokrinnye aspekty vliyaniya nizkointensivnogo elektromagnitnogo izlucheniya millimetrovogo diapazona na organizm cheloveka pri razlichnoj vozrastassotsiirovannoj patologii [Neuroimmuno-endocrine aspects of the influence of the low-intensity electromagnetic radiation of the millimeter range on the human body with different age-related pathology]. Fundamental’nyye issledovaniya — Fundamental Research, № 9-5, pp. 866–870. (In Russian)
Messlinger, K. (2009) Migraine: Where and how does the pain originate? Experimental Brain Research, vol. 196, no. 1, pp. 179–193. DOI: 10.1007/s00221-009-1756-y (In English)
Misery, L. (1997) Skin, immunity and the nervous system. British Journal of Dermatology, vol. 137, no. 6, pp. 843–850. DOI: 10.1046/j.1365-2133.1997.19762090.x (In English)
Pakhomov, A. G., Akyel, Y., Pakhomova, O. N. et al. (1998) Current state and implications of research on biological effects of millimeter waves: A review of the literature. Bioelectromagnetics, vol. 19, no. 7, pp. 393–413. PMID: 9771583. (In English)
Panteleev, S. S., Sokolov, A. Yu., Kartus, D. E. et al. (2004) Response of the spinal trigeminal nucleus neurons to electric stimulation of the rat dura mater. Rossiyskiy fiziologicheskiy zhurnal im. I. M. Sechenova — Russian Journal of Physiology, vol. 90, no. 1, pp. 3–10. (In Russian)
Partyla, T., Hacker, H., Edinger, H. et al. (2017) Remote effects of electromagnetic millimeter waves on experimentally induced cold pain: A double-blinded crossover investigation in healthy volunteers. Anesthesia and Analgesia, vol. 124, no. 3, pp. 980–985. DOI: 10.1213/ANE.0000000000001657 (In English)
Paxinos, G., Watson C. (1998) The rat brain in stereotaxic coordinates. London: Academic Press, 456 p. (In English)
Radzievsky, A. A., Rojavin, M. A., Cowan, A. et al. (2000) Hypoalgesic effect of millimeter waves in mice: Dependence on the site of exposure. Life Sciences, vol. 66, no. 21, pp. 2101–2111. DOI: 10.1016/s0024-3205(00)00536-1 (In English)
Radzievsky, A. A., Rojavin, M. A., Cowan, A. et al. (2001) Peripheral neural system involvement in hypoalgesic effect of electromagnetic millimeter waves. Life Sciences, vol. 68, no. 10, pp. 1143–1151. DOI: 10.1016/s0024-3205(00)01016-x (In English)
Radzievsky, A. A., Gordiienko, O. V., Szabo, I. et al. (2004) Millimeter wave-induced suppression of B16 F10 melanoma growth in mice: Involvement of endogenous opioids. Bioelectromagnetics, vol. 25, no. 6, pp. 466–473. DOI: 10.1002/bem.20018 (In English)
Radzievsky, A. A., Gordiienko, O. V., Alekseev, S. et al. (2008) Electromagnetic millimeter wave induced hypoalgesia: Frequency dependence and involvement of endogenous opioids. Bioelectromagnetics, vol. 29, no. 4, pp. 284–295. DOI: 10.1002/bem.20389 (In English)
Rojavin, M. A., Radzievsky, A. A., Cowan, A., Ziskin, M. C. (2000) Pain relief caused by millimeter waves in mice: Results of cold water tail flick tests. International Journal of Radiation. Biology, vol. 76, no. 4, pp. 575–579. PMID: 10815639. (In English)
Rojavin, M. A., Ziskin, M. C. (1998) Medical application of millimetre waves. Quarterly Journal of Medicine, vol. 91, no. 1, pp. 57–66. DOI: 10.1093/qjmed/91.1.57 (In English)
Safronova, V. G., Gabdoulkhakova, A. G., Santalov, B. F. (2002) Immunomodulating action of low intensity millimeter waves on primed neutrophils. Bioelectromagnetics, vol. 23, no. 8, pp. 599–606. DOI: 10.1002/bem.10056 (In English)
Shapiro, M. G., Priest, M. F., Siegel, P. H., Bezanilla, F. (2013) Thermal mechanisms of millimeter wave stimulation of excitable cells. Biophysical Journal, vol. 104, no. 12, pp. 2622–2628. DOI: 10.1016/j.bpj.2013.05.014 (In English)
Sivachenko, I. B., Medvedev, D. S., Molodtsova, I. D. et al. (2015) Effekt elektromagnitnogo izlucheniya millimetrovogo diapazona na eksperimental’noy modeli migreni [The effect of millimeter-wave electromagnetic radiation on an experimental model of migraine]. Byulleten’ eksperimental’noy biologii i meditsiny — Bulletin of Experimental Biology and Medicine, vol. 160, no. 10, pp. 420–425. (In Russian)
Sokolov, A. Y, Lyubashina O. A, Panteleev S. S, Chizh, B. A. (2010) Neurophysiological markers of central sensitization in the trigeminal pathway and their modulation by the cyclo-oxygenase inhibitor ketorolac. Cephalalgia, vol. 30, no. 10, pp. 1241–1249. DOI: 10.1177/0333102410365104 (In English)
Storer, R. J., Akerman, S., Goadsby, P. J. (2003) Characterization of opioid receptors that modulate nociceptive neurotransmission in the trigeminocervical complex. British Journal of Pharmacology, vol. 138, no. 2, pp. 317–324. DOI: 10.1038/sj.bjp.0705034 (In English)
Usichenko, T. I., Edinger, H., Gizhko, V. V. et al. (2006) Low-intensity electromagnetic millimeter waves for pain therapy. Evidence-Based Complementary and Alternative Medicine, vol. 3, no. 2, pp. 201–207. DOI: 10.1093/ ecam/nel012 (In English)
Williamson, D. J., Shepheard, S. L., Cook, D. A. et al. (2001) Role of opioid receptors in neurogenic dural vasodilation and sensitization of trigeminal neurones in anaesthetized rats. British Journal of Pharmacology, vol. 133, no. 6, pp. 807–814. DOI: 10.1038/sj.bjp.0704136 (In English)
Yip, Y. B., Tse, H. M., Wu, K. K. (2007) An experimental study comparing the effects of combined transcutaneous acupoint electrical stimulation and electromagnetic millimeter waves for spinal pain in Hong Kong. Complementary Therapies in Clinical Practice, vol. 13, no. 1, pp. 4–14. DOI: 10.1016/j.ctcp.2006.08.002 (In English)
Zhadobov, M., Alekseev, S. I., Drean, Y., L. et al. (2015) Millimeter waves as a source of selective heating of skin. Bioelectromagnetics, vol. 36, no. 6, pp. 464–475. DOI: 10.1002/bem.21929 (In English)
Ziskin, M. C. (2013) Millimeter waves: Acoustic and electromagnetic. Bioelectromagnetics, vol. 34, no. 1, pp. 3–14. DOI: 10.1002/bem.21750 (In English)
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Sergey S. Panteleev, Ivan B. Sivachenko, Olga A. Lyubashina, Dmitry S. Medvedev, Alexey Yu. Sokolov
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.