The interaction between nervous and secretory functions in the integrative activity of the neurosecretory Retzius cell of the leech

A review

Authors

  • Svetlana S. Sergeeva Pavlov Institute of Physiology, Russian Academy of Sciences

DOI:

https://doi.org/10.33910/2687-1270-2020-1-3-212-217

Keywords:

neurosecretory Retzius cell of leeches, somatic exocytosis, impulse activity

Abstract

Based on the literature review and our own experimental data, it is shown how the two most important functions of the Retzius neuron (RN) of the medical leech — secretory and electrical — are related to each other. During low-frequency activation, RN behaves like a typical nerve cell, releasing serotonin from the presynaptic endings. During high-frequency stimulation, RN demonstrates properties a secretory cell, releasing serotonin by somatic exocytosis. The mechanism of autoinhibition (secretory function), revealed during highfrequency synaptic stimulation of RN, allows to prevent hyperactivation of its impulse activity (nervous function), which, in turn, through autoregulation inhibits hyperactivation of somatic exocytosis (secretory function). These data demonstrate that RN is a unique neurosecretory cell with polyfunctional activity.

References

Beck, A., Lohr, C., Deitmer, J. W. (2001) Calcium transients in subcompartments of the leech Retzius neuron as induced by single action potentials. Journal of Neurobiology, vol. 48, no. 1, pp. 1–18. PMID: 11391646. DOI: 10.1002/neu.1039 (In English)

Bruns, D., Engert, F., Lux, H. D. (1993) A fast activating presynaptic reuptake current during serotonergic transmission in identified neurons of Hirudo. Neuron, vol. 10, no. 4, pp. 559–572. PMID: 8386524. DOI: 10.1016/0896-6273(93)90159-o (In English)

Bruns, D., Riedel, D., Klingauf, J., Jahn, R. (2000) Quantal release of serotonin. Neuron, vol. 28, no. 1, pp. 205–220. PMID: 11086995. DOI: 10.1016/s0896-6273(00)00097-0 (In English)

Carretta, M. (1988) The Retzius cells in the leech: A review of their properties and synaptic connections. Comparative Biochemistry and Physiology — Part A: Molecular and Integrative Physiology, vol. 91, no. 3, pp. 405–413. PMID: 2906825. DOI: 10.1016/0300-9629(88)90611-1 (In English)

De-Miguel, F. F., Fuxe, K. (2012) Extrasynaptic neurotransmission as a way of modulating neuronal functions. Frontiers in Physiology, vol. 3, article 16. PMID: 22363292. DOI: 10.3389/fphys (in English)

De-Miguel, F. F., Nicholls, J. G. (2015) Release of chemical transmitters from cell bodies and dendrites of nerve cells. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, vol. 370, no. 1672, article 20140181. PMID: 26009760. DOI: 10.1098/rstb.2014.0181 (In English)

De-Miguel, F. F., Santamaria-Holek, I., Noguez, P. et al. (2012) Biophysics of active vesicle transport, an intermediate step that couples excitation and exocytosis of serotonin in the neuronal soma. PLoS One, vol. 7, no. 10, article e45454. DOI: 10.1371/journal.pone.0045454 (In English)

De-Miguel, F. F., Trueta, C. (2005) Synaptic and extrasynaptic secretion of serotonin. Cellular and Molecular Neurobiology, vol. 25, no. 2, pp. 297–312. PMID: 16047543. DOI: 10.1007/s10571-005-3061-z (In English)

Ehinger, B., Falck, B., Myhrberg, H. E. (1968) Biogenic monoamines in Hirudo medicinalis. Histochemi, vol. 15, no. 2, pp. 140–149. PMID: 5741854. DOI: 10.1007/BF00306364 (In English)

Fischer, L., Scherbarth, F., Chagnaud, B., Felmy, F. (2017) Intrinsic frequency response patterns in mechano-sensory neurons of the leech. Biology Open, vol. 6, no. 7, pp. 993–999. PMID: 28546342. DOI: 10.1242/bio.023960 (In English)

Kеrkut, G. A., Walker, R. J. (1967) The action of acetylcholine, dopamine and 5-hydroxytryptamine on the spontaneous activity of the cells of Retzius of the leech Hirudo medicinalis. British Journal of Pharmacology and Chemotherapy, vol. 30, no. 3, pp. 644–654. PMID: 6050503. DOI: 10.1111/j.1476-5381.1967.tb02171.x (In English)

Lent, C. M. (1981) Morphology of neurons containing monoamines within leech segmental ganglia. Journal of Experimental Zoology, vol. 216, no. 2, pp. 311–316. DOI: 10.1002/jez.1402160212 (In English)

Mar, A., Drapeau, P. (1996) Modulation of conduction block in leech mechanosensory neurons. The Journal of Neuroscience, vol. 16, no. 14, pp. 4335–4343. PMID: 8699244. DOI: 10.1523/JNEUROSCI.16-14-04335.1996 (In English)

Marsden, C. A., Kerkut, G. A. (1969) Fluorescence microscopy of the 5HT- and catecholamine-containing cells in the central nervous system of the leech Hirudo medicinalis. Comparative Biochemistry and Physiology, vol. 31, no. 6, pp. 851–862. PMID: 5308458. DOI: 10.1016/0010-406x(69)91795-2 (In English)

Mason, A., Sunderland, A. J., Leake, L. D. (1979) Effects of leech Retzius cells on body wall muscles. Comparative Biochemistry and Physiology — Part C: Toxicology & Pharmacology, vol. 63C, no. 2, pp. 359–361. PMID: 40750. DOI: 10.1016/0306-4492(79)90086-8 (In English)

Moshtagh-Khorasani, M., Miller, E. W., Torre, V. (2013) The spontaneous electrical activity of neurons in leech ganglia. Physiological Reports, vol. 1, no. 5, article e00089. PMID: 24303164. DOI: 10.1002 / phy2.89 (In English)

Nusbaum, M. P., Kristan, W. B. Jr. (1986) Swim initiation in the leech by serotonin-containing interneurones, cells 21 and 61. The Journal of Experimental Biology, vol. 122, pp. 277–302. PMID: 3723072. (In English)

Sergeeva, S. S. (1994) Izmenenie kharaktera impul’snoj aktivnosti nejronov Rettsiusa pri vozrastanii chastoty ego sinapticheskoj aktivatsii [Electrophysiological research on the topography of the axodendritic synapses of Retzius’ neuron in the leech]. Zhurnal vysshej nervnoj dejatel’nosti im. I. P. Pavlova — I. P. Pavlov Journal of Higher Nervous Activity, vol. 44, no. 6, pp. 1144–1147. (In Russian)

Sergeeva, S. S. (1995) Elektrofiziologicheskoe issledovanie topografii akso-dendritnykh sinapsov nejrona Rettsiusa pijavki [Electrophysiological research on the topography of the axodendritic synapses of Retzius’ neuron in the leech]. Fiziologicheskij zhurnal im. I. M. Sechenova — Russian Journal of Physiology, vol. 81, no. 10, pp. 117–120. (In Russian)

Sergeeva, S. S., Laktionova, A. A., Fomina, N. Yu. (2018) Effects of nimodipine, calcium-free medium and colchicine on electrogenesis of neurosecretory Retzius cells in the leech Hirudo medicinalis. Journal of Evolutionary Biochemistry and Physiology, vol. 54, no. 4, pp. 332–337. DOI: 10.1134/S0022093018040105 (In English)

Smith, P. A., Walker, R. J. (1973) Studies on 5-hydroxytryptamine receptors of neurones from Hirudo medicinalis. British Journal of Pharmacology, vol. 47, no. 3, pp. 633P–634P. PMID: 4730849 (In English)

Szczupak, L., Kristan, W. B. Jr. (1995) Widespread mechanosensory activation of the serotonergic system of the medicinal leech. Journal of Neurophysiology, vol. 74, no. 6, pp. 2614–2624. PMID: 8747219. DOI: 10.1152/jn.1995.74.6.2614 (In English)

Trueta, C., Mendez, B., De-Miguel, F. F. (2003) Somatic exocytosis of serotonin mediated by L-type calcium channels in cultured leech neurons. The Journal of Physiology, vol. 547, no. 2, pp. 405–416. PMID: 12562971. DOI: 10.1113/jphysiol.2002.030684 (In English)

Velazquez-Ulloa, N., Blackshaw, S. E., Szczupak, L. et al. (2003) Convergence of mechanosensory inputs onto neuromodulatory serotonergic neurons in the leech. Journal of Neurobiology, vol. 54, no. 4, pp. 604–617. PMID: 12555272. DOI: 10.1002/neu.10184 (In English)

Willard, A. L. (1981) Effects of serotonin on the generation of the motor program for swimming by the medicinal leech. The Journal of Neuroscience, vol. 1, no. 9, pp. 936–944. PMID: 7288474. DOI: 10.1523/JNEUROSCI.01-09-00936.1981 (In English)

Published

2020-09-30

Issue

Section

Reviews