Regeneration of first auditory neuron action potential by a weak magnetic field in patients with hearing loss
DOI:
https://doi.org/10.33910/2687-1270-2024-5-4-357-364Keywords:
sensorineural hearing loss, voltage-gated ion channels, membrane depolarization, first auditory neuron, action potential, weak alternating magnetic fieldAbstract
Sensorineural hearing loss can result not only from damage to the auditory apparatus or central auditory pathways but also from cellular dysfunction at the neuronal level, particularly in the first auditory neuron. A key issue may involve the absence or inadequate generation of the action potential (AP) in this neuron. To address this, we have developed a device for the non-invasive application of a weak (less than 300 μT) alternating magnetic field, designed to activate voltage-gated Na+, K+, and Ca2+ ion channels in the first auditory neuron. The sequential opening of these channels induces membrane depolarization, generating an AP and restoring neuronal conductivity. Improvement in hearing was observed in patients with neural hearing loss (degree III and IV) who use hearing aids. The exposure time to the alternating magnetic field varied depending on the diagnosis and the patient’s age. This article reports a hearing improvement of approximately 10 dB in an adult patient following a single 20-minute session and a 20–40 dB improvement in children after a 10-minute session. However, the new sensitivity threshold achieved through electromagnetic stimulation remains unstable and requires further treatment sessions along with appropriate acoustic support.
References
ЛИТЕРАТУРА
Альтман, Я. А., Таварткиладзе, Г. А. (2003) Руководство по аудиологии. М.: ДМК Пресс, 360 с.
Бинги, В. Н. (1995) Ядерные спины в первичных механизмах биологического действия магнитных полей. Биофизика, т. 40, № 3, с. 671–685.
Гайнутдинова, Т. Х., Силантьева, Д. И., Андрианов, В. В. и др. (2010) Влияние увеличения и снижения содержания внутриклеточного кальция на электрические характеристики командных нейронов у обученных улиток. Ученые записки Казанского государственного университета. Серия: Естественные науки, т. 152, № 2, с. 29–40.
Мельников, К. Н. (2007) Кальциевые каналы возбудимых мембран. Обзоры по клинической фармакологии и лекарственной терапии, т. 5, № 1, с. 28–42.
Преображенский, Б. С., Темкин, Я. С., Лихачев, А. Г. (1955) Болезни уха, носа и горла. 5-е изд. М.: Медгиз, 335 с.
Преображенский, Н. А. (ред.). (1978) Тугоухость. М.: Медицина, 439 с.
Сурма, С. В., Щеголев, Б. Ф., Скоромец, Т. А. (2018) Способ купирования периферического нейрогенного хронического болевого синдрома. Патент RU2645948C1. Дата регистрации 28.02.2018. Выдано Роспатентом.
Тишевской, И. А. (2000) Анатомия центральной нервной системы. Челябинск: Изд-во ЮУрГУ, 131 с.
Ahmed, Z., Wieraszko, A. (2015) Pulsed magnetic stimulation modifies amplitude of action potentials in vitro via ionic channels-dependent mechanism. Bioelectromagnetics, vol. 36, no. 5, pp. 386–397. https://doi.org/10.1002/bem.21917
Alberts, B., Johnson, A., Lewis, J. et al. (2002) Molecular biology of the cell. 4th ed. New York: Garland Science Publ., 712 p.
Hoffman, D. A., Magee, J. C., Colbert, C. M., Johnston, D. (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature, vol. 387, no. 6636, pp. 869–875. https://doi.org/10.1038/43119
Lacroix, J. J., Campos, F. V., Frezza, L., Bezanilla, F. (2013) Molecular bases for the asynchronous activation of sodium and potassium channels required for nerve impulse generation. Neuron, vol. 79, no. 4, pp. 651–657. https://doi.org/10.1016/j.neuron.2013.05.036
Rosen, A. D. (2003) Effect of a 125mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics, vol. 24, no. 7, pp. 517–523. https://doi.org/10.1002/bem.10124
Shen, J.-F., Chao, Y.-L., Du, L. (2007) Effects of static magnetic fields on the voltage-gated potassium channel currents in trigeminal root ganglion neurons. Neuroscience Letters, vol. 415, no. 2, pp. 164–168. https://doi.org/10.1016/j.neulet.2007.01.015
Zheng, Y., Dou, J.-R., Gao, Y. et al. (2016) Effects of 15 Hz square wave magnetic fields on the voltage-gated sodium and potassium channels in prefrontal cortex pyramidal neurons. International Journal of Radiation Biology, vol. 93, no. 4, pp. 449–455. https://doi.org/10.1080/09553002.2016.1259671
REFERENCES
Ahmed, Z., Wieraszko, A. (2015) Pulsed magnetic stimulation modifies amplitude of action potentials in vitro via ionic channels-dependent mechanism. Bioelectromagnetics, vol. 36, no. 5, pp. 386–397. https://doi.org/10.1002/bem.21917 (In English)
Alberts, B., Johnson, A., Lewis, J. et al. (2002) Molecular biology of the cell. 4th ed. New York: Garland Science Publ., 712 p. (In English)
Altman, Ya. A., Tavartkiladze, G. A. (2003) Rukovodstvo po audiologii [Handbook on audiology]. Moscow: DMK Press, 360 p. (In Russian)
Bingi, V. N. (1995) Yadernye spiny v pervichnykh mekhanizmakh biologicheskogo dejstviya magnitnykh polej [Nuclear spins in the primary mechanisms of biological action of magnetic fields]. Biofizika — Biophysics, vol. 40, no. 3. pp. 671–685. (In Russian)
Gainutdinova, T. Kh., Silantieva, D. I., Andrianov, V. V. et al. (2010) Vliyanie uvelicheniya i snizheniya soderzhaniya vnutrikletochnogo kal’tsiya na elektricheskie kharakteristiki komandnykh nejronov u obuchennykh ulitok [Influence of intracellular calcium level increase and decrease on electrical characteristics of command neurons of learned snails]. Uchenye zapiski Kazanskogo gosudarstvennogo universiteta. Seriya: Estestvennye nauki, vol. 152, no. 2. pp. 29–40. (In Russian)
Hoffman, D. A., Magee, J. C., Colbert, C. M., Johnston, D. (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature, vol. 387, no. 6636, pp. 869–875. https://doi.org/10.1038/43119 (In English)
Lacroix, J. J., Campos, F. V., Frezza, L., Bezanilla, F. (2013) Molecular bases for the asynchronous activation of sodium and potassium channels required for nerve impulse generation. Neuron, vol. 79, no. 4, pp. 651–657. https://doi.org/10.1016/j.neuron.2013.05.036 (In English)
Mel’nikov, K. N. (2007) Kal’tsevye kanaly vozbudimykh membran [Calcium channels of excitable membranes]. Obzory po klinicheskoj farmakologii i lekarstvennoj terapii — Reviews on Clinical Pharmacology and Drug Therapy, vol. 5, no. 1, pp. 28–42. (In Russian)
Preobrazhenskij, B. S., Temkin, Ya. S., Likhachev, A. G. (1955) Bolezni ukha, nosa i gorla [Diseases of the ear, nose and throat]. Moscow: Medgiz Publ., 335 p. (In Russian)
Preobrazhenskij, N. A. (ed.). (1978) Tugoukhost’ [Hearing loss]. Moscow: Meditsina Publ., 439 p. (In Russian)
Rosen, A. D. (2003) Effect of a 125mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics, vol. 24, no. 7, pp. 517–523. https://doi.org/10.1002/bem.10124 (In English)
Shen, J.-F., Chao, Y.-L., Du, L. (2007) Effects of static magnetic fields on the voltage-gated potassium channel currents in trigeminal root ganglion neurons. Neuroscience Letters, vol. 415, no. 2, pp. 164–168. https://doi.org/10.1016/j.neulet.2007.01.015 (In English)
Surma, S. V., Shchegolev, B. F., Skoromets, T. A. (2018) Sposob kupirovaniya perifericheskogo nejrogennogo khronicheskogo bolevogo sindroma [Relief of peripheral neurogenic chronic pain syndrome]. Patent RU2645948C1. Register date 28.02.2018. Granted by Rospatent. (In Russian)
Tishevskoj, I. A. (2000) Anatomia tsentral’noj nervnoj systemy [Central nervous system anatomy]. Chelyabinsk: South Ural State University Publ., 131 p. (In Russian)
Zheng, Y., Dou, J.-R., Gao, Y. et al. (2016) Effects of 15 Hz square wave magnetic fields on the voltage-gated sodium and potassium channels in prefrontal cortex pyramidal neurons. International Journal of Radiation Biology, vol. 93, no. 4, pp. 449–455. https://doi.org/10.1080/09553002.2016.1259671 (In English)
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Boris F. Shchegolev, Sergey V. Surma, Irina I. Popova, Dmitry S. Klyachko

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.