Theta and alpha activity changes in patients with vascular cognitive disorder following cognitive rehabilitation after coronary artery bypass grafting
DOI:
https://doi.org/10.33910/2687-1270-2024-5-4-345-356Keywords:
vascular cognitive disorder, cognitive training, EEG, theta rhythm, alpha rhythm, coronary artery bypass graftingAbstract
Disruption of cerebral circulation, caused by atherosclerosis or cardiac surgery, is often associated with cognitive disorders (CD). The identification and implementation of effective strategies for CD prevention require monitoring of neurophysiological changes that accompany rehabilitation. The study aimed to investigate the changes in theta and alpha brain activity in patients with and without vascular cognitive disorder (VCD) who underwent cognitive rehabilitation in the early postoperative period following coronary artery bypass grafting (CABG). The study involved 104 patients, 51 of whom participated in a combined multitasking training program during the early postoperative phase. A comparison group of 53 patients was also included. VCD symptoms were identified in patients from both groups prior to CABG using a modified version of the Montreal Cognitive Assessment (MoCA) test. Electroencephalographic (EEG) recordings were taken in a resting state with closed eyes, 3–5 days prior to CABG and at 11–12 days post-surgery. It was found that patients without VCD who underwent training exhibited no increase in theta activity after CABG compared to patients with VCD (p=0.017). In contrast, the control group demonstrated an increase in theta activity post-CABG, irrespective of the VCD status. These findings highlight the negative adverse impact of VCD on brain activity during cognitive rehabilitation. Further research is needed to explore the neurophysiological mechanisms underlying cognitive function recovery following cardiac surgery.
References
ЛИТЕРАТУРА
Ивкин, А. А., Григорьев, Е. В., Шукевич, Д. Л. (2021) Роль искусственного кровообращения в развитии послеоперационной когнитивной дисфункции. Кардиология и сердечно-сосудистая хирургия, т. 14, № 2, с. 168–174. https://doi.org/10.17116/kardio202114021168
Катунина, Е. А. (2015) Гетерогенность сосудистых когнитивных нарушений и вопросы терапии. Неврология, нейропсихиатрия, психосоматика, т. 7, № 3, с. 62–69. https://doi.org/10.14412/2074-2711-2015-3-62-69
Локшина, А. Б., Гришина, Д. А., Захаров, В. В. (2023) Сосудистые когнитивные нарушения: вопросы диагностики и лечения. Неврология, нейропсихиатрия, психосоматика, т. 15, № 2, с. 106–113. https://doi.org/10.14412/2074-2711-2023-2-106-113
Парфенов, В. А. (2017) Сосудистые когнитивные нарушения. В кн.: Дисциркуляторная энцефалопатия и сосудистые когнитивные расстройства. М.: ИМА-ПРЕСС, с. 23–26.
Тарасова, И. В., Тарасов, Р. С., Трубникова, О. А. и др. (2020a) Изменения электрической активности головного мозга у пациентов с различной тяжестью поражения коронарного русла через один год после коронарного шунтирования. Комплексные проблемы сердечно-сосудистых заболеваний, т. 9, № 1, с. 6–14. https://doi.org/10.17802/2306-1278-2020-9-1-6-14
Тарасова, И. В., Трубникова, О. А., Разумникова, О. М. (2020b) Пластичность функциональных систем мозга как компенсаторный ресурс при нормальном и патологическом старении, ассоциированном с атеросклерозом. Атеросклероз, т. 16, № 1, с. 59–67. https://doi.org/10.15372/ATER20200108
Трубникова, О. А., Тарасова, И. В., Барбараш, О. Л. (2020) Нейрофизиологические механизмы и перспективы использования двойных задач в восстановлении когнитивных функций у кардиохирургических пациентов. Фундаментальная и клиническая медицина, т. 5, № 2, c. 101–111. https://doi.org/10.23946/2500-0764-2020-5-1-101-111
Трубникова, О. А., Тарасова, И. В., Кухарева, И. Н. и др. (2022) Эффективность компьютеризированных когнитивных тренингов методом двойных задач в профилактике послеоперационных когнитивных дисфункций при коронарном шунтировании. Кардиоваскулярная терапия и профилактика, т. 21, № 8, статья 3320. https://doi.org/10.15829/1728-8800-2022-3320
Babiloni, C., Blinowska, K., Bonanni, L. et al. (2020) What electrophysiology tells us about Alzheimer’s disease: A window into the synchronization and connectivity of brain neurons. Neurobiology of Aging, vol. 85, pp. 58–73. https://doi.org/10.1016/j.neurobiolaging.2019.09.008
Babiloni, C., Ferri, R., Noce, G. et al. (2021) Resting state alpha electroencephalographic rhythms are differently related to aging in cognitively unimpaired seniors and patients with Alzheimer’s Disease and amnesic mild cognitive impairment. Journal of Alzheimer’s Disease, vol. 82, no. 3, pp. 1085–1114. https://doi.org/10.3233/JAD-201271
Brain, J., Greene, L., Tang, E. Y. H. et al. (2023) Cardiovascular disease, associated risk factors, and risk of dementia: An umbrella review of meta-analyses. Frontiers in Epidemiology, vol. 3, article 1095236. https://doi.org/10.3389/fepid.2023.1095236
Chang Wong, E., Chang Chui, H. (2022) Vascular cognitive impairment and dementia. Continuum: Lifelong Learning in Neurology, vol. 28, no. 3, pp. 750–780. https://doi.org/10.1212/CON.0000000000001124
Estarellas, M., Huntley, J., Bor, D. (2024) Neural markers of reduced arousal and consciousness in mild cognitive impairment. International Journal of Geriatric Psychiatry, vol. 39, no. 6, article e6112. https://doi.org/10.1002/gps.6112
Fernández, A., Noce, G., Del Percio, C. et al. (2022) Resting state electroencephalographic rhythms are affected by immediately preceding memory demands in cognitively unimpaired elderly and patients with mild cognitive impairment. Frontiers in Aging Neuroscience, vol. 14, article 907130. https://doi.org/10.3389/fnagi.2022.907130
Hachinski, V. (1994) Vascular dementia: A radical redefinition. Dementia, vol. 5, no. 3-4, pp. 130–132. https://doi.org/10.1159/000106709
Hamilton, C. A., Schumacher, J., Matthews, F. et al. (2021) Slowing on quantitative EEG is associated with transition to dementia in mild cognitive impairment. International Psychogeriatrics, vol. 33, no. 12, pp. 1321–1325. https://doi.org/10.1017/S1041610221001083
Iliadou, P., Paliokas, I., Zygouris, S. et al. (2021) A comparison of traditional and serious game-based digital markers of cognition in older adults with mild cognitive impairment and healthy controls. Journal of Alzheimer’s Disease, vol. 79, no. 4, pp. 1747–1759. https://doi.org/10.3233/JAD-201300
Jafari, Z., Kolb, B. E., Mohajerani, M. H. (2020) Neural oscillations and brain stimulation in Alzheimer’s disease. Progress in Neurobiology, vol. 194, article 101878. https://doi.org/10.1016/j.pneurobio.2020.101878
Kasputytė, G., Bukauskienė, R., Širvinskas, E. et al. (2023) The effect of relative cerebral hyperperfusion during cardiac surgery with cardiopulmonary bypass to delayed neurocognitive recovery. Perfusion, vol. 38, no. 8, pp. 1688–1696. https://doi.org/10.1177/02676591221129737
Moretti, D. V. (2015) Theta and alpha EEG frequency interplay in subjects with mild cognitive impairment: Evidence from EEG, MRI, and SPECT brain modifications. Frontiers in Aging Neuroscience, vol. 7, article 31. https://doi.org/10.3389/fnagi.2015.00031
Musaeus, C. S., Engedal, K., Høgh, P. et al. (2018) EEG theta power is an early marker of cognitive decline in dementia due to Alzheimer’s disease. Journal of Alzheimer’s Disease, vol. 64, no. 4, pp. 1359–1371. https://doi.org/10.3233/JAD-180300
Park, J., Ho, R. L. M., Wang, W.-E. et al. (2024) The effect of age on alpha rhythms in the human brain derived from source localized resting-state electroencephalography. NeuroImage, vol. 292, article 120614. https://doi.org/10.1016/j.neuroimage.2024.120614
Prieto Del Val, L., Cantero, J. L., Atienza, M. (2016) Atrophy of amygdala and abnormal memory-related alpha oscillations over posterior cingulate predict conversion to Alzheimer’s disease. Scientific Reports, vol. 6, article 31859. https://doi.org/10.1038/srep31859
Rollnik, J. D. (2019) Clinical neurophysiology of neurologic rehabilitation. Handbook of Clinical Neurology, vol. 161, pp. 187–194. https://doi.org/10.1016/B978-0-444-64142-7.00048-5
Sheorajpanday, R. V. A., Marien, P., Weeren, A. J. T. M. et al. (2013) EEG in silent small vessel disease: SLORETA mapping reveals cortical sources of vascular cognitive impairment no dementia in the default mode network. Journal of Clinical Neurophysiology, vol. 30, no. 2, pp. 178–187. https://doi.org/10.1097/WNP.0b013e3182767d15
Steinberg, N., Parisi, J. M., Feger, D. M. et al. (2023) Rural-urban differences in cognition: Findings from the advanced cognitive training for independent and vital elderly trial. Journal of Aging and Health, vol. 35, no. 9, suppl., pp. 107S–118S. https://doi.org/10.1177/08982643221102718
Tarasova, I. V., Kukhareva, I. N., Kupriyanova, D. S. et al. (2024) Electrical activity changes and neurovascular unit markers in the brains of patients after cardiac surgery: Effects of multi-task cognitive training. Biomedicines, vol. 12, no. 4, article 756. https://doi.org/10.3390/biomedicines12040756
Tarasova, I. V., Trubnikova, O. A., Barbarash, O. L. (2018) EEG and clinical factors associated with mild cognitive impairment in coronary artery disease patients. Dementia and Geriatric Cognitive Disorders, vol. 46, no. 5-6, pp. 275–284. https://doi.org/10.1159/000493787
Tarasova, I. V., Trubnikova, O. A., Kukhareva, I. N. et al. (2023) A comparison of two multi-tasking approaches to cognitive training in cardiac surgery patients. Biomedicines, vol. 11, no. 10, article 2823. https://doi.org/10.3390/biomedicines11102823
Torres-Simón, L., Doval, S., Nebreda, A. et al. (2022) Understanding brain function in vascular cognitive impairment and dementia with EEG and MEG: A systematic review. NeuroImage. Clinical, vol. 35, article 103040. https://doi.org/10.1016/j.nicl.2022.103040
Wang, Y., Zhang, H., Liu, L. et al. (2023) Cognitive function and cardiovascular health in the elderly: Network analysis based on hypertension, diabetes, cerebrovascular disease, and coronary heart disease. Frontiers in Aging Neuroscience, vol. 15, article 1229559. https://doi.org/10.3389/fnagi.2023.1229559
Zappasodi, F., Pasqualetti, P., Rossini, P. M., Tecchio, F. (2019) Acute phase neuronal activity for the prognosis of stroke recovery. Neural Plasticity, vol. 2019, article 1971875. https://doi.org/10.1155/2019/1971875
Zhao, Q., Wan, H., Pan, H., Xu, Y. (2024) Postoperative cognitive dysfunction — current research progress. Frontiers in Behavioral Neuroscience, vol. 18, article 1328790. https://doi.org/10.3389/fnbeh.2024.1328790
REFERENCES
Babiloni, C., Blinowska, K., Bonanni, L. et al. (2020) What electrophysiology tells us about Alzheimer’s disease: A window into the synchronization and connectivity of brain neurons. Neurobiology of Aging, vol. 85, pp. 58–73. https://doi.org/10.1016/j.neurobiolaging.2019.09.008 (In English)
Babiloni, C., Ferri, R., Noce, G. et al. (2021) Resting state alpha electroencephalographic rhythms are differently related to aging in cognitively unimpaired seniors and patients with Alzheimer’s Disease and amnesic mild cognitive impairment. Journal of Alzheimer’s Disease, vol. 82, no. 3, pp. 1085–1114. https://doi.org/10.3233/JAD-201271 (In English)
Brain, J., Greene, L., Tang, E. Y. H. et al. (2023) Cardiovascular disease, associated risk factors, and risk of dementia: An umbrella review of meta-analyses. Frontiers in Epidemiology, vol. 3, article 1095236. https://doi.org/10.3389/fepid.2023.1095236 (In English)
Chang Wong, E., Chang Chui, H. (2022) Vascular cognitive impairment and dementia. Continuum: Lifelong Learning in Neurology, vol. 28, no. 3, pp. 750–780. https://doi.org/10.1212/CON.0000000000001124 (In English)
Estarellas, M., Huntley, J., Bor, D. (2024) Neural markers of reduced arousal and consciousness in mild cognitive impairment. International Journal of Geriatric Psychiatry, vol. 39, no. 6, article e6112. https://doi.org/10.1002/gps.6112 (In English)
Fernández, A., Noce, G., Del Percio, C. et al. (2022) Resting state electroencephalographic rhythms are affected by immediately preceding memory demands in cognitively unimpaired elderly and patients with mild cognitive impairment. Frontiers in Aging Neuroscience, vol. 14, article 907130. https://doi.org/10.3389/fnagi.2022.907130 (In English)
Hachinski, V. (1994) Vascular dementia: A radical redefinition. Dementia, vol. 5, no. 3-4, pp. 130–132. https://doi.org/10.1159/000106709 (In English)
Hamilton, C. A., Schumacher, J., Matthews, F. et al. (2021) Slowing on quantitative EEG is associated with transition to dementia in mild cognitive impairment. International Psychogeriatrics, vol. 33, no. 12, pp. 1321–1325. https://doi.org/10.1017/S1041610221001083 (In English)
Iliadou, P., Paliokas, I., Zygouris, S. et al. (2021) A comparison of traditional and serious game-based digital markers of cognition in older adults with mild cognitive impairment and healthy controls. Journal of Alzheimer’s Disease, vol. 79, no. 4, pp. 1747–1759. https://doi.org/10.3233/JAD-201300 (In English)
Ivkin, A. A., Grigoriyev, E. V., Shukevich, D. L. (2021) Rol’ iskusstvennogo krovoobrashcheniya v razvitii posleoperatsionnoj kognitivnoj disfunktsii [Influence of cardiopulmonary bypass on postoperative cognitive dysfunction]. Kardiologiya i serdechno-sosudistaya khirurgiya — Russian Journal of Cardiology and Cardiovascular Surgery, vol. 14, no. 2, pp. 168–174. https://doi.org/10.17116/kardio202114021168 (In Russian)
Jafari, Z., Kolb, B. E., Mohajerani, M. H. (2020) Neural oscillations and brain stimulation in Alzheimer’s disease. Progress in Neurobiology, vol. 194, article 101878. https://doi.org/10.1016/j.pneurobio.2020.101878 (In English)
Kasputytė, G., Bukauskienė, R., Širvinskas, E. et al. (2023) The effect of relative cerebral hyperperfusion during cardiac surgery with cardiopulmonary bypass to delayed neurocognitive recovery. Perfusion, vol. 38, no. 8, pp. 1688–1696. https://doi.org/10.1177/02676591221129737 (In English)
Katunina, E. A. (2015) Geterogennost’ sosudistykh kognitivnykh narushenij i voprosy terapii [The heterogeneity of vascular cognitive impairments and the issues of therapy]. Nevrologiya, nejropsikhiatriya, psikhosomatika — Neurology, Neuropsychiatry, Psychosomatics, vol. 7, no. 3, pp. 62–69. https://doi.org/10.14412/2074-2711-2015-3-62-69 (In Russian)
Lokshina, A. B., Grishina, D. A., Zakharov, V. V. (2023) Sosudistye kognitivnye narusheniya: voprosy diagnostiki i lecheniya [Vascular cognitive impairment: Issues of diagnosis and treatment]. Nevrologiya, neiropsikhiatriya, psikhosomatika — Neurology, Neuropsychiatry, Psychosomatics, vol. 15, no. 2, pp. 106–113. https://doi.org/10.14412/2074-2711-2023-2-106-113 (In Russian)
Moretti, D. V. (2015) Theta and alpha EEG frequency interplay in subjects with mild cognitive impairment: Evidence from EEG, MRI, and SPECT brain modifications. Frontiers in Aging Neuroscience, vol. 7, article 31. https://doi.org/10.3389/fnagi.2015.00031 (In English)
Musaeus, C. S., Engedal, K., Høgh, P. et al. (2018) EEG theta power is an early marker of cognitive decline in dementia due to Alzheimer’s disease. Journal of Alzheimer’s Disease, vol. 64, no. 4, pp. 1359–1371. https://doi.org/10.3233/JAD-180300 (In English)
Parfenov, V. A. (2017) Sosudistye kognitivnye narusheniya [Vascular cognitive impairment]. In: Distsirkulyatornaya entsefalopatiya i sosudistye kognitivnye rasstrojstva [Dyscirculatory encephalopathy and vascular cognitive disorders]. Moscow: IMA-PRESS Publ., pp. 23–26. (In Russian)
Park, J., Ho, R. L. M., Wang, W.-E. et al. (2024) The effect of age on alpha rhythms in the human brain derived from source localized resting-state electroencephalography. NeuroImage, vol. 292, article 120614. https://doi.org/10.1016/j.neuroimage.2024.120614 (In English)
Prieto Del Val, L., Cantero, J. L., Atienza, M. (2016) Atrophy of amygdala and abnormal memory-related alpha oscillations over posterior cingulate predict conversion to Alzheimer’s disease. Scientific Reports, vol. 6, article 31859. https://doi.org/10.1038/srep31859 (In English)
Rollnik, J. D. (2019) Clinical neurophysiology of neurologic rehabilitation. Handbook of Clinical Neurology, vol. 161, pp. 187–194. https://doi.org/10.1016/B978-0-444-64142-7.00048-5 (In English)
Sheorajpanday, R. V. A., Marien, P., Weeren, A. J. T. M. et al. (2013) EEG in silent small vessel disease: SLORETA mapping reveals cortical sources of vascular cognitive impairment no dementia in the default mode network. Journal of Clinical Neurophysiology, vol. 30, no. 2, pp. 178–187. https://doi.org/10.1097/WNP.0b013e3182767d15 (In English)
Steinberg, N., Parisi, J. M., Feger, D. M. et al. (2023) Rural-urban differences in cognition: Findings from the advanced cognitive training for independent and vital elderly trial. Journal of Aging and Health, vol. 35, no. 9, suppl., pp. 107S–118S. https://doi.org/10.1177/08982643221102718 (In English)
Tarasova, I. V., Kukhareva, I. N., Kupriyanova, D. S. et al. (2024) Electrical activity changes and neurovascular unit markers in the brains of patients after cardiac surgery: Effects of multi-task cognitive training. Biomedicines, vol. 12, no. 4, article 756. https://doi.org/10.3390/biomedicines12040756 (In English)
Tarasova, I. V., Tarasov, R. S., Trubnikova, O. A. et al. (2020a) Izmeneniya elektricheskoj aktivnosti golovnogo mozga u patsientov s razlichnoj tyazhest’yu porazheniya koronarnogo rusla cherez odin god posle koronarnogo shuntirovaniya [The changes of brain electric activity in patients with different severity of coronary atherosclerosis one-year after coronary artery bypass grafting]. Kompleksnye problemy serdechno-sosudistykh zabolevanij — Complex Issues of Cardiovascular Diseases, vol. 9, no. 1, pp. 6–14. https://doi.org/10.17802/2306-1278-2020-9-1-6-14 (In Russian)
Tarasova, I. V., Trubnikova, O. A., Razumnikova, O. M. (2020b) Plastichnost’ funktsional’nykh sistem mozga kak kompensatornyj resurs pri normal’nom i patologicheskom starenii, assotsiirovannom s aterosklerozom [Plasticity of brain functional systems as a compensator resource in normal and pathological aging associated with atherosclerosis]. Ateroscleroz, vol. 16, no. 1, pp. 59–67. https://doi.org/10.15372/ATER20200108 (In Russian)
Tarasova, I. V., Trubnikova, O. A., Barbarash, O. L. (2018) EEG and clinical factors associated with mild cognitive impairment in coronary artery disease patients. Dementia and Geriatric Cognitive Disorders, vol. 46, no. 5-6, pp. 275–284. https://doi.org/10.1159/000493787 (In English)
Tarasova, I. V., Trubnikova, O. A., Kukhareva, I. N. et al. (2023) A comparison of two multi-tasking approaches to cognitive training in cardiac surgery patients. Biomedicines, vol. 11, no. 10, article 2823. https://doi.org/10.3390/biomedicines11102823 (In English)
Torres-Simón, L., Doval, S., Nebreda, A. et al. (2022) Understanding brain function in vascular cognitive impairment and dementia with EEG and MEG: A systematic review. NeuroImage. Clinical, vol. 35, article 103040. https://doi.org/10.1016/j.nicl.2022.103040 (In English)
Trubnikova, O. A., Tarasova, I. V., Barbarash, O. L. (2020) Nejrofiziologicheskie mekhanizmy i perspektivy ispol’zovaniya dvojnykh zadach v vosstanovlenii kognitivnykh funktsij u kardiokhirurgicheskikh patsientov [Neurophysiological mechanisms and perspective for the use of dual tasks in recovering cognitive function after cardiac surgery]. Fundamental’naya i klinicheskaya meditsina — Fundamental and Clinical Medicine, vol. 5, no. 2, pp. 101–111. https://doi.org/10.23946/2500-0764-2020-5-1-101-111 (In Russian)
Trubnikova, O. A., Tarasova, I. V., Kukhareva, I. N. et al. (2022) Effektivnost’ komp’yuterizirovannykh kognitivnykh treningov metodom dvojnykh zadach v profilaktike posleoperatsionnykh kognitivnykh disfunktsij pri koronarnom shuntirovanii [Effectiveness of dual-task computerized cognitive training in the prevention of postoperative cognitive dysfunction in coronary bypass surgery]. Kardiovaskulyarnaya terapiya i profilaktika — Cardiovascular Therapy and Prevention, vol. 21, no. 8, article 3320. https://doi.org/10.15829/1728-8800-2022-3320 (In Russian)
Wang, Y., Zhang, H., Liu, L. et al. (2023) Cognitive function and cardiovascular health in the elderly: Network analysis based on hypertension, diabetes, cerebrovascular disease, and coronary heart disease. Frontiers in Aging Neuroscience, vol. 15, article 1229559. https://doi.org/10.3389/fnagi.2023.1229559 (In English)
Zappasodi, F., Pasqualetti, P., Rossini, P. M., Tecchio, F. (2019) Acute phase neuronal activity for the prognosis of stroke recovery. Neural Plasticity, vol. 2019, article 1971875. https://doi.org/10.1155/2019/1971875 (In English)
Zhao, Q., Wan, H., Pan, H., Xu, Y. (2024) Postoperative cognitive dysfunction — current research progress. Frontiers in Behavioral Neuroscience, vol. 18, article 1328790. https://doi.org/10.3389/fnbeh.2024.1328790 (In English)
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Irina V. Tarasova, Dariya S. Kupriyanova, Irina N. Kukhareva, Anastasia S. Sosnina, Olga A. Trubnikova, Olga L. Barbarash

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.