The impact of dipeptide and tripeptide combinations on the development of tissue cultures from different origins

Authors

DOI:

https://doi.org/10.33910/2687-1270-2024-5-4-365-374

Keywords:

dipeptides, tripeptides, organotypic tissue culture, vessels, lungs

Abstract

The development of bioregulatory agents that preserve essential physiological functions in multicellular organisms remains a key priority in modern physiology and medicine. At the Saint-Petersburg Institute of Bioregulation and Gerontology, a novel technology was established for isolating polypeptide complexes from various bovine organs and tissues, which demonstrated significant effects on the organotypic culture of tissues from experimental animals. Chromatographic and mass spectrometry analyses identified the most common amino acid sequences in these polypeptides, leading to the synthesis of dipeptides and tripeptides. Drugs derived from these peptides have been shown to enhance cell proliferation in organ systems composed of tissues from different origins. However, to further optimize the proliferative effects, it is essential to explore the synergistic impacts of peptide combinations. Therefore, the objective of this study was to examine the effects of dipeptide and tripeptide combinations on the development of vascular and pulmonary tissues in sexually mature rats, using organotypic cultures to simulate these tissue environments. This research is particularly relevant in the context of the increasing significance of metabolomic analysis in advancing systems biology and molecular medicine.

References

ЛИТЕРАТУРА

Журкович, И. К., Ковров, Н. Г., Рыжак, Г. А. и др. (2020) Идентификация коротких пептидов в составе полипептидных комплексов, выделенных из органов животных. Успехи современной биологии, т. 140, № 2, с. 140–148. https://www.doi.org/10.31857/S004213242002012X

Иванова, П. Н., Заломаева, Е. С., Чалисова, Н. И. и др. (2022) Воздействие магнитных полей различной интенсивности и синтетических олигопептидов на клеточную регенерацию тканей. Интегративная физиология, т. 3, № 2, с. 254–264. https://www.doi.org/10.33910/2687-1270-2022-3-2-254-264

Хавинсон, В. Х. (2020) Лекарственные пептидные препараты: прошлое, настоящее, будущее. Клиническая медицина, т. 98, № 3, с. 165–177. https://doi.org/10.30629/0023-2149-2020-98-3-165-177

Хавинсон, В. Х., Линькова, Н. С., Тарновская, С. И. (2016) Короткие пептиды регулируют экспрессию генов. Бюллетень экспериментальной биологии и медицины, т. 162, № 8, с. 259–264.

Хавинсон, В. Х., Чалисова, Н. И., Линькова, Н. С. и др. (2015) Зависимость тканеспецифического действия пептидов от количества аминокислот, входящих в их состав. Фундаментальные исследования, № 2-3, с. 497–503.

Чалисова, Н. И., Иванова, П. Н., Егозова, Е. С., Никитина, Е. А. (2023) Стимулирующее влияние коротких пептидов на клеточную пролиферацию в органотипической культуре тканей. Интегративная физиология, т. 4, № 2, с. 225–234. https://doi.org/10.33910/2687-1270-2023-4-2-225-234

Чалисова, Н. И., Концевая, Е. А., Войцеховская, М. А., Комашня, А. В. (2011) Регуляторное влияние кодируемых аминокислот на основные клеточные процессы у молодых и старых животных. Успехи геронтологии, т. 24, № 2, с. 189–197.

Чалисова, Н. И., Никитина, Е. А., Александрова, М. Л., Золотоверхая, Е. А. (2021) Влияние кодируемых L-аминокислот на органотипическую культуру тканей различного генеза. Интегративная физиология, т. 2, № 2, с. 196–204. https://doi.org/10.33910/2687-1270-2021-2-2-196-204

Aftabuddin, M., Kundu, S. (2007) Hydrophobic, hydrophilic, and charged amino acid networks within protein. Biophysical Journal, vol. 93, no. 1, pp. 225–231. https://doi.org/10.1529/biophysj.106.098004

Ananieva, E. A., Powell, J. D., Hutson, S. M. (2016) Leucine metabolism in T cell activation: MTOR signaling and beyond. Advances in Nutrition, vol. 7, no. 4, pp. 798S–805S. https://doi.org/10.3945/an.115.011221

Ashapkin, V., Khavinson, V., Shilovsky, G. et al. (2020) Gene expression in human mesenchymal stem cell aging cultures: Modulation by short peptides. Molecular Biology Reports, vol. 47, no. 6, pp. 4323–4329. https://doi.org/10.1007/s11033-020-05506-3

Chen, X., Huang, Z., Chen, D. et al. (2013) MicroRNA-27a is induced by leucine and contributes to leucine-induced proliferation promotion in C2C12 cells. International Journal of Molecular Sciences, vol. 14, no. 7, pp. 14076– 14084. https://doi.org/10.3390/ijms140714076

Da Luz Dias, R., Basso, B., Donadio, M. V. F. et al. (2018) Leucine reduces the proliferation of MC3T3-E1 cells through DNA damage and cell senescence. Toxicology in Vitro, vol. 48, pp. 1–10. https://doi.org/10.1016/j.tiv.2017.12.015

Dai, J.-M., Yu, M.-X., Shen, Z.-Y. et al. (2015) Leucine promotes proliferation and differentiation of primary preterm rat satellite cells in part through mTORC1 signaling pathway. Nutrients, vol. 7, no. 5, pp. 3387–3400. https://doi.org/10.3390/nu7053387

Fedoreyeva, L. I., Kireev, I. I., Khavinson, V. Kh., Vanyushin, B. F. (2011) Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA. Biochemistry (Moscow), vol. 76, no. 11, pp. 1210–1219. https://doi.org/10.1134/S0006297911110022

García, S., López, E., López-Colomé, A. M. (2008) Glutamate accelerates RPE cell proliferation through ERK1/2 activation via distinct receptor-specific mechanisms. Journal of Cellular Biochemistry, vol. 104, no. 2, pp. 377– 390. https://doi.org/10.1002/jcb.21633

Garcia-Bermudez, J., Baudrier, L., La, K. et al. (2018) Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nature Cell Biology, vol. 20, no. 7, pp. 775–781. https://doi.org/10.1038/s41556-018-0118-z

Guo, K., Cao, Y., Li, Z. et al. (2020) Glycine metabolomic changes induced by anticancer agents in A549 cells. Amino Acids, vol. 52, no. 5, pp. 793–809. https://doi.org/10.1007/s00726-020-02853-0

Hägglund, B., Sandberg, G. (1993) Effect of L-alanine and some other amino acids on thymocyte proliferation in vivo. Immunobiology, vol. 188, no. 1–2, pp. 62–69. https://doi.org/10.1016/S0171-2985(11)80487-0

Han, G., Lin, C., Yin, H. (2023) Use of glycine to augment exon skipping and cell therapies for Duchenne muscular dystrophy. In: R. Maruyama, T. Yokota (eds.). Muscular dystrophy therapeutics. Methods in molecular biology. Vol. 2587. New York: Humana Press, pp. 165–182. https://doi.org/10.1007/978-1-0716-2772-3_10

Helenius, I. T., Madala, H. R., Yeh, J.-R. J. (2021) An Asp to strike out cancer? Therapeutic possibilities arising from aspartate’s emerging roles in cell proliferation and survival. Biomolecules, vol. 11, no. 11, article 1666. https://doi.org/10.3390/biom11111666

Jain, M., Nilsson, R., Sharma, S. et al. (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science, vol. 336, no. 6084, pp. 1040–1044. https://doi.org/10.1126/science.1218595

Ke, C., Zhao, S., Wang, L. et al. (2023) Chromatin remodeler BRM is a key mediator of leucine-stimulated mTOR gene transcription in mouse mammary epithelial cells. Biochemical and Biophysical Research Communications, vol. 643, pp. 88–95. https://doi.org/10.1016/j.bbrc.2022.12.064

Khavinson, V., Ilina, A., Kraskovskaya, N. et al. (2021) Neuroprotective effects of tripeptides — epigenetic regulators in mouse model of Alzheimer’s disease. Pharmaceuticals, vol. 14, no. 6, article 515. https://doi.org/10.3390/ph14060515

Kolchina, N., Khavinson, V., Linkova, N. et al. (2019) Systematic search for structural motifs of peptide binding to double-stranded DNA. Nucleic Acids Research, vol. 47, no. 20, pp. 10553–10563. https://doi.org/10.1093/nar/gkz850

Liu, Y., Wang, X., Wu, H. et al. (2016) Glycine enhances muscle protein mass associated with maintaining Akt-mTOR-FOXO1 signaling and suppressing TLR4 and NOD2 signaling in piglets challenged with LPS. American Journal of Physiology — Regulatory, Integrative and Comparative Physiology, vol. 311, no. 2, pp. R365–R373. https://doi.org/10.1152/ajpregu.00043.2016

Meléndez-Rodríguez, F., Urrutia, A. A., Lorendeau, D. et al. (2019) HIF1α suppresses tumor cell proliferation through inhibition of aspartate biosynthesis. Cell Reports, vol. 26, no. 9, pp. 2257–2265. https://doi.org/10.1016/j.celrep.2019.01.106

Pan, S., Fan, M., Liu, Z. et al. (2021) Serine, glycine and one-carbon metabolism in cancer (Review). International Journal of Oncology, vol. 58, no. 2, pp. 158–170. https://doi.org/10.3892/ijo.2020.5158

Silveira-Dorta, G., Martín, V. S., Padrón, J. M. (2015) Synthesis and antiproliferative activity of glutamic acid-based dipeptides. Amino Acids, vol. 47, no. 8, pp. 1527–1532. https://doi.org/10.1007/s00726-015-1987-0

Sinjari, B., Diomede, F., Khavinson, V. et al. (2020) Short peptides protect oral stem cells from ageing. Stem Cell Reviews and Reports, vol. 16, no. 1, pp. 159–166. https://doi.org/10.1007/s12015-019-09921-3

Soon, J. W., Manca, M. A., Laskowska, A. et al. (2024) Aspartate in tumor microenvironment and beyond: Metabolic interactions and therapeutic perspectives. Biochimica et Biophysica Acta (BBA) — Molecular Basis of Disease, vol. 1870, no. 8, article 167451. https://doi.org/10.1016/j.bbadis.2024.167451

Stepulak, A., Rola, R., Polberg, K., Ikonomidou, C. (2014) Glutamate and its receptors in cancer. Journal of Neural Transmission, vol. 121, no. 8, pp. 933–944. https://doi.org/10.1007/s00702-014-1182-6

Teng, L., Qin, Q., Zhou, Z. et al. (2023) Glutamate secretion by embryonic stem cells as an autocrine signal to promote proliferation. Scientific Reports, vol. 13, no. 1, article 19069. https://doi.org/10.1038/s41598-023-46477-2

Tsuji-Tamura, K., Sato, M., Fujita, M., Tamura, M. (2020) The role of PI3K/Akt/mTOR signaling in dose-dependent biphasic effects of glycine on vascular development. Biochemical and Biophysical Research Communications, vol. 529, no. 3, pp. 596–602. https://doi.org/10.1016/j.bbrc.2020.06.085

Vanyushin, B. F., Khavinson, V. Kh. (2016) Short biologically active peptides as epigenetic modulators of gene activity. In: W. Doerfler, P. Böhm (eds.). Epigenetics — a different way of looking at genetics. Epigenetics and human health. Cham: Springer Publ., pp. 69–90. https://doi.org/10.1007/978-3-319-27186-6_5

Wang, D., Kuang, Y., Wan, Z. et al. (2022) Aspartate alleviates colonic epithelial damage by regulating intestinal stem cell proliferation and differentiation via mitochondrial dynamics. Molecular Nutrition & Food Research, vol. 66, no. 24, article e2200168. https://doi.org/10.1002/mnfr.202200168

Wasinger, C., Hofer, A., Spadiut, O., Hohenegger, M. (2018) Amino acid signature in human melanoma cell lines from different disease stages. Scientific Reports, vol. 8, no. 1, article 6245. https://doi.org/10.1038/s41598-018-24709-0

Yamaguchi, Y., Yamamoto, K., Sato, Y. et al. (2016) Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation. Biomedical Research, vol. 37, no. 2, pp. 153–159. https://doi.org/10.2220/biomedres.37.153

REFERENCES

Aftabuddin, M., Kundu, S. (2007) Hydrophobic, hydrophilic, and charged amino acid networks within protein. Biophysical Journal, vol. 93, no. 1, pp. 225–231. https://doi.org/10.1529/biophysj.106.098004 (In English)

Ananieva, E. A., Powell, J. D., Hutson, S. M. (2016) Leucine metabolism in T cell activation: MTOR signaling and beyond. Advances in Nutrition, vol. 7, no. 4, pp. 798S–805S. https://doi.org/10.3945/an.115.011221 (In English)

Ashapkin, V., Khavinson, V., Shilovsky, G. et al. (2020) Gene expression in human mesenchymal stem cell aging cultures: Modulation by short peptides. Molecular Biology Reports, vol. 47, no. 6, pp. 4323–4329. https://doi.org/10.1007/s11033-020-05506-3 (In English)

Chalisova, N. I., Ivanova, P. N., Egozova, E. S., Nikitina, E. A. (2023) Stimuliruyushchee vliyanie korotkikh peptidov na kletochnuyu proliferatsiyu v organotipicheskoj kul’ture tkanej [The stimulating effect of short peptides on cellular proliferation in organotypic tissue culture]. Integrativnaya fiziologiya — Integrative Physiology, vol. 4, no. 2, pp. 225–234. https://doi.org/10.33910/2687-1270-2023-4-2-225-234 (In Russian)

Chalisova, N. I., Kontsevaya, E. A., Voytsekhovskaya, M. A., Komashnya, A. V. (2011) Regulyatornoe vliyanie kodiruemykh aminokislot na osnovnye kletochnye protsessy u molodykh i starykh zhivotnykh [The regulated effect of the coded amino acids on the basic cellular processes in young and old animals]. Uspekhi gerontologii — Advances in Gerontology, vol. 24, no. 2, pp. 189–197. (In Russian)

Chalisova, N. I., Nikitina, E. A., Alexandrova, M. L., Zolotoverkhaja, E. A. (2021) Vliyanie kodiruemykh L-aminokislot na organotipicheskuyu kul’turu tkanej razlichnogo geneza [The effect of coded L-amino acids on the organotypic culture of tissues of different genesis]. Integrativnaya fiziologiya — Integrative Physiology, vol. 2, no. 2, pp. 196– 204. https://doi.org/10.33910/2687-1270-2021-2-2-196-204 (In Russian)

Chen, X., Huang, Z., Chen, D. et al. (2013) MicroRNA-27a is induced by leucine and contributes to leucine-induced proliferation promotion in C2C12 cells. International Journal of Molecular Sciences, vol. 14, no. 7, pp. 14076– 14084. https://doi.org/10.3390/ijms140714076 (In English)

Da Luz Dias, R., Basso, B., Donadio, M. V. F. et al. (2018) Leucine reduces the proliferation of MC3T3-E1 cells through DNA damage and cell senescence. Toxicology in Vitro, vol. 48, pp. 1–10. https://doi.org/10.1016/j.tiv.2017.12.015 (In English)

Dai, J.-M., Yu, M.-X., Shen, Z.-Y. et al. (2015) Leucine promotes proliferation and differentiation of primary preterm rat satellite cells in part through mTORC1 signaling pathway. Nutrients, vol. 7, no. 5, pp. 3387–3400. https://doi.org/10.3390/nu7053387 (In English)

Fedoreyeva, L. I., Kireev, I. I., Khavinson, V. Kh., Vanyushin, B. F. (2011) Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA. Biochemistry (Moscow), vol. 76, no. 11, pp. 1210–1219. https://doi.org/10.1134/S0006297911110022 (In English)

García, S., López, E., López-Colomé, A. M. (2008) Glutamate accelerates RPE cell proliferation through ERK1/2 activation via distinct receptor-specific mechanisms. Journal of Cellular Biochemistry, vol. 104, no. 2, pp. 377– 390. https://doi.org/10.1002/jcb.21633 (In English)

Garcia-Bermudez, J., Baudrier, L., La, K. et al. (2018) Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nature Cell Biology, vol. 20, no. 7, pp. 775–781. https://doi.org/10.1038/s41556-018-0118-z (In English)

Guo, K., Cao, Y., Li, Z. et al. (2020) Glycine metabolomic changes induced by anticancer agents in A549 cells. Amino Acids, vol. 52, no. 5, pp. 793–809. https://doi.org/10.1007/s00726-020-02853-0 (In English)

Hägglund, B., Sandberg, G. (1993) Effect of L-alanine and some other amino acids on thymocyte proliferation in vivo. Immunobiology, vol. 188, no. 1–2, pp. 62–69. https://doi.org/10.1016/S0171-2985(11)80487-0 (In English)

Han, G., Lin, C., Yin, H. (2023) Use of glycine to augment exon skipping and cell therapies for Duchenne muscular dystrophy. In: R. Maruyama, T. Yokota (eds.). Muscular dystrophy therapeutics. Methods in molecular biology. Vol. 2587. New York: Humana Press, pp. 165–182. https://doi.org/10.1007/978-1-0716-2772-3_10 (In English)

Helenius, I. T., Madala, H. R., Yeh, J.-R. J. (2021) An Asp to strike out cancer? Therapeutic possibilities arising from aspartate’s emerging roles in cell proliferation and survival. Biomolecules, vol. 11, no. 11, article 1666. https://doi.org/10.3390/biom11111666 (In English)

Ivanova, P. N., Zalomaeva, E. S., Chalisova, N. I. et al. (2022) Vozdejstvie magnitnykh polej razlichnoj intensivnosti i sinteticheskikh oligopeptidov na kletochnuyu regeneratsiyu tkanej [Cellular tissue regeneration: Effects of magnetic fields of different intensity and synthetic oligopeptides]. Integrativnaya fiziologiya — Integrative Physiology, vol. 3, no. 2, pp. 254–264. https://doi.org/10.33910/2687-1270-2022-3-2-254-264 (In Russian)

Jain, M., Nilsson, R., Sharma, S. et al. (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science, vol. 336, no. 6084, pp. 1040–1044. https://doi.org/10.1126/science.1218595 (In English)

Ke, C., Zhao, S., Wang, L. et al. (2023) Chromatin remodeler BRM is a key mediator of leucine-stimulated mTOR gene transcription in mouse mammary epithelial cells. Biochemical and Biophysical Research Communications, vol. 643, pp. 88–95. https://doi.org/10.1016/j.bbrc.2022.12.064 (In English)

Khavinson, V. Kh. (2020) Lekarstvennye peptidnye preparaty: proshloe, nastoyashchee, budushchee [Peptide medicines: Past, present, future]. Klinicheskaya meditsina — Clinical Medicine (Russian Journal), vol. 98, no. 3, pp. 165–177. https://doi.org/10.30629/0023-2149-2020-98-3-165-177 (In Russian)

Khavinson, V. Kh., Chalisova, N. I., Linkova, N. S. et al. (2015) Zavisimost’ tkanespetsifichnogo dejstviya peptidov ot kolichestva aminokislot, vkhodyashchikh v ikh sostav [The dependence of tissue-specific peptides activity on the number of amino acids in the peptides]. Fundamental’nye issledovaniya, no. 2-3, pp. 497–503. (In Russian)

Khavinson, V., Ilina, A., Kraskovskaya, N. et al. (2021) Neuroprotective effects of tripeptides — epigenetic regulators in mouse model of Alzheimer’s disease. Pharmaceuticals, vol. 14, no. 6, article 515. https://doi.org/10.3390/ph14060515 (In English)

Khavinson, V. Kh., Lin’kova, N. S., Tarnovskaya, S. I. (2016) Korotkie peptidy reguliruyut ekspressiyu genov [Short peptides regulate gene expression]. Byulleten’ eksperimental’noj biologii i meditsiny — Bulletin of Experimental Biology and Medicine, vol. 162, no. 8, pp. 288–292. https://doi.org/10.1007/s10517-016-3596-7 (In Russian)

Kolchina, N., Khavinson, V., Linkova, N. et al. (2019) Systematic search for structural motifs of peptide binding to double-stranded DNA. Nucleic Acids Research, vol. 47, no. 20, pp. 10553–10563. https://doi.org/10.1093/nar/gkz850 (In English)

Liu, Y., Wang, X., Wu, H. et al. (2016) Glycine enhances muscle protein mass associated with maintaining Akt-mTOR-FOXO1 signaling and suppressing TLR4 and NOD2 signaling in piglets challenged with LPS. American Journal of Physiology — Regulatory, Integrative and Comparative Physiology, vol. 311, no. 2, pp. R365–R373. https://doi.org/10.1152/ajpregu.00043.2016 (In English)

Meléndez-Rodríguez, F., Urrutia, A. A., Lorendeau, D. et al. (2019) HIF1α suppresses tumor cell proliferation through inhibition of aspartate biosynthesis. Cell Reports, vol. 26, no. 9, pp. 2257–2265. https://doi.org/10.1016/j.celrep.2019.01.106 (In English)

Pan, S., Fan, M., Liu, Z. et al. (2021) Serine, glycine and one-carbon metabolism in cancer (Review). International Journal of Oncology, vol. 58, no. 2, pp. 158–170. https://doi.org/10.3892/ijo.2020.5158 (In English)

Silveira-Dorta, G., Martín, V. S., Padrón, J. M. (2015) Synthesis and antiproliferative activity of glutamic acid-based dipeptides. Amino Acids, vol. 47, no. 8, pp. 1527–1532. https://doi.org/10.1007/s00726-015-1987-0 (In English)

Sinjari, B., Diomede, F., Khavinson, V. et al. (2020) Short peptides protect oral stem cells from ageing. Stem Cell Reviews and Reports, vol. 16, no. 1, pp. 159–166. https://doi.org/10.1007/s12015-019-09921-3 (In English)

Soon, J. W., Manca, M. A., Laskowska, A. et al. (2024) Aspartate in tumor microenvironment and beyond: Metabolic interactions and therapeutic perspectives. Biochimica et Biophysica Acta (BBA) — Molecular Basis of Disease, vol. 1870, no. 8, article 167451. https://doi.org/10.1016/j.bbadis.2024.167451 (In English)

Stepulak, A., Rola, R., Polberg, K., Ikonomidou, C. (2014) Glutamate and its receptors in cancer. Journal of Neural Transmission, vol. 121, no. 8, pp. 933–944. https://doi.org/10.1007/s00702-014-1182-6 (In English)

Teng, L., Qin, Q., Zhou, Z. et al. (2023) Glutamate secretion by embryonic stem cells as an autocrine signal to promote proliferation. Scientific Reports, vol. 13, no. 1, article 19069. https://doi.org/10.1038/s41598-023-46477-2 (In English)

Tsuji-Tamura, K., Sato, M., Fujita, M., Tamura, M. (2020) The role of PI3K/Akt/mTOR signaling in dose-dependent biphasic effects of glycine on vascular development. Biochemical and Biophysical Research Communications, vol. 529, no. 3, pp. 596–602. https://doi.org/10.1016/j.bbrc.2020.06.085 (In English)

Vanyushin, B. F., Khavinson, V. Kh. (2016) Short biologically active peptides as epigenetic modulators of gene activity. In: W. Doerfler, P. Böhm (eds.). Epigenetics — a different way of looking at genetics. Epigenetics and human health. Cham: Springer Publ., pp. 69–90. https://doi.org/10.1007/978-3-319-27186-6_5 (In English)

Zhurkovich, I. K., Kovrov, N. G., Ryzhak, G. A. et al. (2020) Identifikatsiya korotkikh peptidov v sostave polipeptidnykh kompleksov, vydelennykh iz organov zhivotnykh [Identification of short peptides as part of polypeptide complexes isolated from animal organs]. Uspeki sovremennoj biologii — Biology Bulletin Reviews, vol. 140, no. 2, pp. 140– 148. https://www.doi.org/10.31857/S004213242002012X (In Russian)

Wang, D., Kuang, Y., Wan, Z. et al. (2022) Aspartate alleviates colonic epithelial damage by regulating intestinal stem cell proliferation and differentiation via mitochondrial dynamics. Molecular Nutrition & Food Research, vol. 66, no. 24, article e2200168. https://doi.org/10.1002/mnfr.202200168 (In English)

Wasinger, C., Hofer, A., Spadiut, O., Hohenegger, M. (2018) Amino acid signature in human melanoma cell lines from different disease stages. Scientific Reports, vol. 8, no. 1, article 6245. https://doi.org/10.1038/s41598-018-24709-0 (In English)

Yamaguchi, Y., Yamamoto, K., Sato, Y. et al. (2016) Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation. Biomedical Research, vol. 37, no. 2, pp. 153–159. https://doi.org/10.2220/biomedres.37.153 (In English)

Published

2024-12-27

Issue

Section

Experimental articles