Optokinetic test on a stabilometric platform
DOI:
https://doi.org/10.33910/2687-1270-2025-6-2-142-160Keywords:
optokinetic test, optokinetic nystagmus, optokinetic responses, postural reactions, stabilometric platform, stabilograph, force plate, human vertical posture, motor controlAbstract
The term ‘optokinetic test on a stabilometric platform’ describes a research approach rather than a single standardized technique. The methodology involves quantifying postural control parameters in subjects standing on a stabilometric platform while exposed to controlled moving visual stimuli. Interest in this paradigm grew in Russia during the early 2000s, coinciding with improved access to stabilometric equipment. For its broader practical application, establishing a clearly defined procedure and a reliable, straightforward method for interpreting results is essential. An analysis of contemporary Russian methodological literature indicates significant potential for the technique’s further development and standardization. The emergence of this field is historically connected to the study of optokinetic nystagmus — a reflexive ocular response characterized by alternating slow pursuit and fast saccadic movements triggered by a moving visual field. This review first defines this nystagmus and discusses related terminological considerations. Drawing on an analysis of both historical and contemporary sources in a blended, lecture-like format, separate sections address the neural organization of optokinetic nystagmus, methods and general characteristics of optokinetic stimulation, its application in visual testing, and the neurophysiological rationale for integrating postural response assessment via stabilometry into visually stimulated tests. The conclusion provides a critical evaluation and general recommendations for designing protocols that combine optokinetic stimulation with stabilometric platforms.
References
ЛИТЕРАТУРА
Александров, В. В., Лемак, С. С., Тихонова, К. В. и др. (2023) Биомехатроника — космические исследования. Пилотируемые полеты в космос, № 4 (49), с. 77–94.
Апаев, А. В. (2021) Нистагм: распространенность, классификация, патогенез (обзор литературы). Российская педиатрическая офтальмология, т. 16, № 2, с. 53–60. https://doi.org/10.17816/rpoj70982
Благинин, А. А., Синельников, С. Н., Ляшедько, С. П., Глушков, Р. С. (2018) Влияние оптокинетического и статокинетического воздействий на пространственную ориентировку операторов авиационного профиля. Военно-медицинский журнал, т. 339, № 2, с. 44–49.
Вавилова, А. А. (2022) О некоторых ярких страницах в истории вестибулологии XX века. Исторический обзор, дискуссионные вопросы. Часть 2. Вызовы авиакосмической медицины. Российская оториноларингология, т. 21, № 3, с. 137–147. https://doi.org/10.18692/1810-4800-2022-3-137-147
Гроховский, С. С., Кубряк, О. В. (2018) Метод интегральной оценки эффективности регуляции позы человека. Медицинская техника, № 2 (308), с. 49–52.
Гурфинкель, В. С., Коц, Я. М., Шик, М. Л. (1965) Регуляция позы человека. М.: Наука, 256 с.
Илларионова, Е. М., Грибова, Н. П. (2022) Вестибулярная мигрень. Журнал неврологии и психиатрии им. С. С. Корсакова, т. 122, № 5, с. 78–83. https://doi.org/10.17116/jnevro202212205178
Кисляков, В. А., Неверов, В. П. (1966) Реакция глазодвигательной системы на движение объектов в поле зрения: оптокинетический нистагм. М.; Л.: Наука, 53 с.
Коновалова, Н. Г., Артемьев, А. А., Ахметзянов, Р. Е. (2021) Особенности постуральной регуляции подростков, занимающихся эстрадным танцем, по данным стабилометрии. Спортивная медицина: наука и практика, т. 11, № 3, с. 28–33. https://doi.org/10.47529/2223-2524.2021.3.9
Коскин, С. А., Ковальская, А. А. (2012) Объективное измерение остроты зрения на основе оптокинетического нистагма. Современные методы нистагмографии. Офтальмологические ведомости, т. 5, № 1, с. 52–57.
Кручинин, П. А., Кручинина, А. П., Кудряшов, И. А. и др. (2022) Количественная оценка изменения функционального состояния человека за время полета летательного аппарата. Мехатроника, автоматизация, управление, т. 23, № 12, с. 651–660. https://doi.org/10.17587/mau.23.651-660
Крюков, А. И., Гуров, А. В. (2018) Кафедра оториноларингологии лечебного факультета Российского национального исследовательского университета им. Н. И. Пирогова Минздрава России: от истоков до современности. Вестник оториноларингологии, т. 83, № 1, с. 4–10. https://doi.org/10.17116/otorino20188314-10
Кубряк, О. В. (2020) Как техника предшествует науке (на примере силовых платформ). Гуманитарный вестник, вып. 2 (82), с. 1–13. https://doi.org/10.18698/2306-8477-2020-2-656
Кубряк, О. В. (2025) Тест «лимита стабильности» вертикальной позы человека на стабилоплатформе. Интегративная физиология, т. 6, № 1, с. 26–40. https://doi.org/10.33910/2687-1270-2025-6-1-26-40
Кубряк, О. В., Мезенчук, А. И., Пак, С. А. (2023) Применение стабилоплатформ и корпус экспертов в российских диссертациях за 2016–2022 годы. Физиотерапия, бальнеология и реабилитация, т. 22, № 2, с. 105–114. https://doi.org/10.17816/430299
Лиленко, С. В., Сугарова, С. Б., Лиленко, А. С., Костевич, И. В. (2023) Скрининг-тестирование и компьютеризированная вестибулометрия при вестибулярном нейроните. Медицинский совет, т. 17, № 6, с. 104–111. https://doi.org/10.21518/ms2022-007
Лучихин, Л. А., Скворцов, Д. В., Кононова, Н. А., Востоков, А. В. (2006) Постурографическая экспресс-диагностика функционального состояния системы равновесия в вестибулологии. Вестник оториноларингологии, № 1, с. 13–17. https://pubmed.ncbi.nlm.nih.gov/16482003
Марьенко, И. П., Можейко, М. П., Лихачев, С. А. (2022) Алгоритм выбора методов физической реабилитации у пациентов с атаксией. Неврология и нейрохирургия. Восточная Европа, т. 12, № 4, с. 414–421. https://doi.org/10.34883/PI.2022.12.4.034
Насретдинова, М. Т. (2019) Изменения стабилометрических показателей у пациентов с системным головокружением. Оториноларингология. Восточная Европа, т. 9, № 2, с. 135–139.
Пальчун, В. Т., Лучихин, Л. А., Патрин, А. Ф. (1984) Способ диагностики скрытых вестибулярных расстройств. Патент SU1126285A1. Дата регистрации 27.01.1983. Выдано Роспатентом.
Памяти Льва Александровича Лучихина. (2014) Вестник оториноларингологии, № 6, с. 87. https://doi.org/10.17116/otorino2014687
Парфенов, В. А., Замерград, М. В., Зайцева, О. В. и др. (2024) Доброкачественное пароксизмальное позиционное головокружение: диагностика, лечение, реабилитация. Современные представления о роли бетагистина в комплексном лечении пациентов с доброкачественным пароксизмальным позиционным головокружением. Неврология, нейропсихиатрия, психосоматика, т. 16, № 5, с. 120–130. https://doi.org/10.14412/2074-2711-2024-5-120-130
Переяслов, Г. А., Слива, С. С. (2002) Методическое обеспечение стабилоанализатора «Стабилан 01». Известия ЮФУ. Технические науки, т. 28, № 5, с. 82–88.
Седоченко, С. В., Савинкова, О. Н., Попова, И. Е. (2023) Анализ билатеральных стабилометрических характеристик квалифицированных прыгунов в воду при воздействии оптокинетического нистагма. Человек. Спорт. Медицина, т. 23, № S2, с. 19–23.
Aoki, S., Kawano, A., Terao, M., Murakami, I. (2016) Time dilation in a perceptually jittering dot pattern. Journal of Vision, vol. 16, no. 14, article 2. https://doi.org/10.1167/16.14.2
Babcock, H. L. (1917) Some observations on the Bárány tests as applied to aviators. Boston Medical and Surgical Journal, vol. 177, no. 24, pp. 840–843.https://doi.org/10.1056/NEJM191712131772404
Bergmann, F., Chaimovitz, M., Gutman, J., Zelig, S. (1963) Optokinetic nystagmus and its interaction with central nystagmus. The Journal of Physiology, vol. 168, no. 2, pp. 318–331. https://doi.org/10.1113/jphysiol.1963.sp007194
Berthoz, A., Lacour, M., Soechting, J. F., Vidal, P. P. (1979) The role of vision in the control of posture during linear motion. Progress in Brain Research, vol. 50, pp. 197–209. https://doi.org/10.1016/S0079-6123(08)60820-1
Bonato, F., Bubka, A., Palmisano, S. et al. (2008) Vection change exacerbates simulator sickness in virtual environments. Presence: Teleoperators and Virtual Environments, vol. 17, no. 3, pp. 283–292. https://doi.org/10.1162/pres.17.3.283
Bornmann, L., Haunschild, R., Mutz, R. (2021) Growth rates of modern science: A latent piecewise growth curve approach to model publication numbers from established and new literature databases. Humanities & Social Sciences Communications, vol. 8, no. 1, article 224. https://doi.org/10.1057/s41599-021-00903-w
Borries, G. (1926) Fixation und Nystagmus. Kopenhagen: Th. Linds Eftf. Publ., 112 p.
Brandt, T., Strupp, M. (2005) General vestibular testing. Clinical Neurophysiology, vol. 116, no. 2, pp. 406–426. https://doi.org/10.1016/j.clinph.2004.08.009
Cavero, I., Guillon, J.-M., Holzgrefe, H. H. (2017) Reminiscing about Jan Evangelista Purkinje: A pioneer of modern experimental physiology. Advances in Physiology Education, vol. 41, no. 4, pp. 528–538. https://doi.org/10.1152/advan.00068.2017
Chaudhary, S., Saywell, N., Taylor, D. (2022) The differentiation of self-motion from external motion is a prerequisite for postural control: A narrative review of visual-vestibular interaction. Frontiers in Human Neuroscience, vol. 16, article 697739. https://doi.org/10.3389/fnhum.2022.697739
Collins, H. (2010) Tacit and explicit knowledge. Chicago: University of Chicago Press, 200 p.
Cooper, N., Cant, I., White, M. D., Meyer, G. F. (2018) Perceptual assessment of environmental stability modulates postural sway. PLoS One, vol. 13, no. 11, article e0206218. https://doi.org/10.1371/journal.pone.0206218
De Blasiis, P., Fullin, A., De Girolamo, C. I. et al. (2024) Posture and vision: How different distances of viewing target affect postural stability and plantar pressure parameters in healthy population. Heliyon, vol. 10, no. 21, article e39257. https://doi.org/10.1016/j.heliyon.2024.e39257
De Souza, M. T., da Silva, M. D., de Carvalho, R. (2010) Integrative review: What is it? How to do it? Einstein (São Paulo), vol. 8, no. 1-1, pp. 102–106. https://doi.org/10.1590/s1679-45082010rw1134
Dichgans, J., Brandt, T. (1973) Optokinetic motion sickness and pseudo-Coriolis effects induced by moving visual stimuli. Acta Oto-Laryngologica, vol. 76, no. 1-6, pp. 339–348. https://doi.org/10.3109/00016487309121519
Dichgans, J., Held, R., Young, L. R., Brandt, T. (1972) Moving visual scenes influence the apparent direction of gravity. Science, vol. 178, no. 4066, pp. 1217–1219. https://doi.org/10.1126/science.178.4066.1217
Dieterich, M., Brandt, T. (2015) The bilateral central vestibular system: Its pathways, functions, and disorders. Annals of the New York Academy of Sciences, vol. 1343, no. 1, pp. 10–26. https://doi.org/10.1111/nyas.12585
Du, J., DiNicola, L. M., Angeli, P. A. et al. (2024) Organization of the human cerebral cortex estimated within individuals: Networks, global topography, and function. Journal of Neurophysiology, vol. 131, no. 6, pp. 1014–1082. https://doi.org/10.1152/jn.00308.2023
Economides, J. R., Suh, Y.-W., Simmons, J. B. et al. (2020) Vertical optokinetic stimulation induces diagonal eye movements in patients with idiopathic infantile nystagmus. Investigative Ophthalmology & Visual Science, vol. 61, no. 6, article 14. https://doi.org/10.1167/iovs.61.6.14
Enoksson, P. (1956) Optokinetic nystagmus in brain lesions. Acta Ophthalmologica, vol. 34, no. 3, pp. 163–184. https://doi.org/10.1111/j.1755-3768.1956.tb03347.x
Garbutt, S., Han, Y., Kumar, A. N. et al. (2003) Vertical optokinetic nystagmus and saccades in normal human subjects. Investigative Ophthalmology & Visual Science, vol. 44, no. 9, pp. 3833–3841. https://doi.org/10.1167/iovs.03-0066
Geisinger, D., Engelberg, K., Suarez, H. et al. (2022) Slower velocity perception with stronger optokinetic nystagmus: A paradoxical perception in virtual reality. Journal of the Neurological Sciences, vol. 441, article 120384. https://doi.org/10.1016/j.jns.2022.120384
Gerb, J., Brandt, T., Huppert, D. (2023) Historical descriptions of nystagmus and abnormal involuntary eye movements in various ancient cultures. Science Progress, vol. 106, no. 3, article 00368504231191986. https://doi.org/10.1177/00368504231191986
Glasauer, S., Schneider, E., Jahn, K. et al. (2005) How the eyes move the body. Neurology, vol. 65, no. 8, pp. 1291–1293. https://doi.org/10.1212/01.wnl.0000175132.01370.fc
Guerraz, M., Bronstein, A. M. (2008) Ocular versus extraocular control of posture and equilibrium. Neurophysiologie Clinique / Clinical Neurophysiology, vol. 38, no. 6, pp. 391–398. https://doi.org/10.1016/j.neucli.2008.09.007
Hale, D. E., Reich, S., Gold, D. (2024) Optokinetic nystagmus: Six practical uses. Practical Neurology, vol. 24, no. 4, pp. 285–288. https://doi.org/10.1136/pn-2023-003772
Harcourt, B. (1969) Special forms of examination. Proceedings of the Royal Society of Medicine, vol. 62, no. 6, pp. 557–561. https://doi.org/10.1177/003591576906200612
Hentze, M., Hougaard, D. D., Kingma, H. (2025) The intra-examiner variability in and accuracy of traditional manual diagnostics of benign paroxysmal positional vertigo: A prospective observational cohort study. Journal of Clinical Medicine, vol. 14, no. 2, article 434. https://doi.org/10.3390/jcm14020434
Hogenhuis, L. A. H. (2008) Book VIII — ‘On the origin of movement’. History. In: Cognition and recognition: On the origin of movement. Leiden: Brill Publ., pp. 301–322. https://doi.org/10.1163/ej.9789004168367.i-353.58
Jacobson, G. P., Shepard, N. T., Barin, K. et al. (2021) Balance function assessment and management. 3rd ed. San Diego: Plural Publ., 717 p.
Kanari, K., Kikuchi, M. (2025) OKN and pupillary response modulation by gaze and attention shifts. Journal of Eye Movement Research, vol. 18, no. 2, article 11. https://doi.org/10.3390/jemr18020011
Kanari, K., Sakamoto, K., Kaneko, H. (2017) Effect of visual attention on the properties of optokinetic nystagmus. PLoS One, vol. 12, no. 4, article e0175453. https://doi.org/10.1371/journal.pone.0175453
Kassavetis, P., Kaski, D., Anderson, T., Hallet, M. (2022) Eye movement disorders in movement disorders. Movement Disorders Clinical Practice, vol. 9, no. 3, pp. 284–295. https://doi.org/10.1002/mdc3.13413
Keshavarz, B., Riecke, B. E., Hettinger, L. J., Campos, J. L. (2015) Vection and visually induced motion sickness: How are they related? Frontiers in Psychology, vol. 6, article 472. https://doi.org/10.3389/fpsyg.2015.00472
Knapp, C. M., Proudlock, F. A., Gottlob, I. (2013) OKN asymmetry in human subjects: A literature review. Strabismus, vol. 21, no. 1, pp. 37–49. https://doi.org/10.3109/09273972.2012.762532
Komagata, J., Sugiura, A., Takamura, H. et al. (2021) Effect of optokinetic stimulation on weight-bearing shift in standing and sitting positions in stroke patients. European Journal of Physical and Rehabilitation Medicine, vol. 57, no. 1, pp. 13–23. https://doi.org/10.23736/S1973-9087.20.06184-5
Konijnenberg, J. J., Kingma, H. (1995) Visuo-vestibular interaction measurements: An alternative for rotation tests with better discriminatory power? Acta Oto-Laryngologica, vol. 115-1, suppl. 520, pp. 194–198. https://doi.org/10.3109/00016489509125226
Kubryak, O. V., Grohovsky, S. S. (2015) Shift in vertical stance parameters in humans viewing different images. Human Physiology, vol. 41, no. 2, pp. 162–165. https://doi.org/10.1134/S0362119715010089
Leigh, R. J., Zee, D. S. (2015) The neurology of eye movements. 5th ed. New York: Oxford University Press, 1136 p. https://doi.org/10.1093/med/9780199969289.001.0001
Lewkonia, I. (1969) Objective assessment of visual acuity by induction of optokinetic nystagmus. British Journal of Ophthalmology, vol. 53, no. 9, pp. 641–644. https://doi.org/10.1136/bjo.53.9.641
London, R. (1982) Optokinetic nystagmus: A review of pathways, techniques and selected diagnostic applications. Journal of the American Optometric Association, vol. 53, no. 10, pp. 791–798.
Luo, H., Wang, X., Fan, M. et al. (2018) The effect of visual stimuli on stability and complexity of postural control. Frontiers in Neurology, vol. 9, article 48. https://doi.org/10.3389/fneur.2018.00048
Mangalam, M., Kelty-Stephen, D. G. (2021) Hypothetical control of postural sway. Journal of the Royal Society Interface, vol. 18, no. 176, article 20200951. https://doi.org/10.1098/rsif.2020.0951
McAssey, M., Brandt, T., Dieterich, M. (2022) EEG analysis of the visual motion activated vection network in left-and right-handers. Scientific Reports, vol. 12, no. 1, article 19566. https://doi.org/10.1038/s41598-022-21824-x
Min, X., Rehman, F. U., Jing, W. et al. (2024) Preliminary study on the computer-based optokinetic nystagmus analyzer to detect the visual acuity of preschool children. Indian Journal of Ophthalmology, vol. 72, suppl. 2, pp. S162–S166. https://doi.org/10.4103/IJO.IJO_2683_23
Miura, K., Takemura, A., Taki, M., Kawano, K. (2019) Model of optokinetic responses involving two different visual motion processing pathways. Progress in Brain Research, vol. 248, pp. 329–340. https://doi.org/10.1016/bs.pbr.2019.02.005
Mudry, A. (2000) Robert Barany (1876–1936). Journal of Neurology, Neurosurgery & Psychiatry, vol. 68, no. 4, p. 507. https://doi.org/10.1136/jnnp.68.4.507
Murakami, I., Cavanagh, P. (1998) A jitter after-effect reveals motion-based stabilization of vision. Nature, vol. 395, no. 6704, pp. 798–801. https://doi.org/10.1038/27435
Murakami, I., Cavanagh, P. (2001) Visual jitter: Evidence for visual-motion-based compensation of retinal slip due to small eye movements. Vision Research, vol. 41, no. 2, pp. 173–186. https://doi.org/10.1016/S0042-6989(00)00237-6
Murphy, K. M., Monteiro, L. (2024) Anatomical and molecular development of the human primary visual cortex. Frontiers in Cellular Neuroscience, vol. 18, article 1427515. https://doi.org/10.3389/fncel.2024.1427515
Nashner, L. M, Berthoz, A. (1978) Visual contribution to rapid motor responses during postural control. Brain Research, vol. 150, no. 2, pp. 403–407. https://doi.org/10.1016/0006-8993(78)90291-3
Nashner, L. M., Black, F. O., Wall, C. III (1982) Adaptation to altered support and visual conditions during stance: Patients with vestibular deficits. Journal of Neuroscience, vol. 2, no. 5, pp. 536–544. https://doi.org/10.1523/JNEUROSCI.02-05-00536.1982
Nishino, L. K., Rocha, G. D., de Souza, T. S. A. et al. (2021) Protocol for static posturography with dynamic tests in individuals without vestibular complaints using the Horus system. Codas, vol. 33, no. 3, article e20190270. https://doi.org/10.1590/2317-1782/20202019270
Nürnberger, M., Klingner, C., Witte, O. W., Brodoehl, S. (2021) Mismatch of visual-vestibular information in virtual reality: Is motion sickness part of the brains attempt to reduce the prediction error? Frontiers in Human Neuroscience, vol. 15, article 757735. https://doi.org/10.3389/fnhum.2021.757735
Papanagnu, E., Brodsky, M. C. (2014) Is there a role for optokinetic nystagmus testing in contemporary orthoptic practice? Old tricks and new perspectives. American Orthoptic Journal, vol. 64, no. 1, pp. 1–10. https://doi.org/10.3368/aoj.64.1.1
Perucca, L., Robecchi Majnardi, A., Frau, S., Scarano, S. (2021) Normative data for the NeuroCom® Sensory Organization Test in subjects aged 80–89 years. Frontiers in Human Neuroscience, vol. 15, article 761262. https://doi.org/10.3389/fnhum.2021.761262
Peterka, R. J. (2002) Sensorimotor integration in human postural control. Journal of Neurophysiology, vol. 88, no. 3, pp. 1097–1118. https://doi.org/10.1152/jn.2002.88.3.1097
Pischel, K. (1912) Barany’s investigation on localization in the cerebellum. Cal State J Med, vol. 10, no. 9, pp. 378–379.
Pletcher, E. R., Williams, V. J., Abt, J. P. et al. (2017) Normative data for the NeuroCom Sensory Organization Test in US Military Special Operations Forces. Journal of Athletic Training, vol. 52, no. 2, pp. 129–136. https://doi.org/10.4085/1062-6050-52.1.05
Redfern, M. S., Yardley, L., Bronstein, A. M. (2001) Visual influences on balance. Journal of Anxiety Disorders, vol. 15, no. 1–2, pp. 81–94. https://doi.org/10.1016/S0887-6185(00)00043-8
Reinecke, R. D. (1961) Review of optokinetic nystagmus from 1954–1960. Archives of Ophthalmology, vol. 65, no. 4, pp. 609–615. https://doi.org/10.1001/archopht.1961.01840020611028
Reynders, M., Bos, J., Mert, A. et al. (2025) Feasibility of virtual reality to induce and measure optokinetic after-nystagmus (OKAN): A pilot study. Scientific Reports, vol. 15, no. 1, article 13471. https://doi.org/10.1038/s41598-025-96915-6
Reynders, M., Van der Sypt, L., Bos, J. et al. (2024) Systematic review and meta-analysis of the diagnostic value of optokinetic after-nystagmus in vestibular disorders. Frontiers in Neurology, vol. 15, article 1367735. https://doi.org/10.3389/fneur.2024.1367735
Robinson, D. A. (2022) The behavior of the optokinetic system. Progress in Brain Research, vol. 267, no. 1, pp. 215–230. https://doi.org/10.1016/bs.pbr.2021.10.010
Roelofs, C. O. (1954) Optokinetic nystagmus. Documenta Ophthalmologica, vol. 7-8, pp. 579–650. https://doi.org/10.1007/BF00238148
Rubinstein, N. J., Abel, L. A. (2011) Optokinetic nystagmus suppression as an index of the allocation of visual attention. Investigative Ophthalmology & Visual Science, vol. 52, no. 1, pp. 462–467. https://doi.org/10.1167/iovs.10-6016
Sadeghpour, S., Otero-Millan, J. (2020) Torsional component of microsaccades during fixation and quick phases during optokinetic stimulation. Journal of Eye Movement Research, vol. 13, no. 5, article 5. https://doi.org/10.16910/jemr.13.5.5
Tarnutzer, A. A., Straumann, D. (2018) Nystagmus. Current Opinion in Neurology, vol. 31, no. 1, pp. 74–80. https://doi.org/10.1097/WCO.0000000000000517
Tsutsumi, T., Inaoka, H., Fukuoka, Y. et al. (2007) Cross-coupling in a body-translating reaction: Interaural optokinetic stimulation reflects a gravitational cue. Acta Oto-Laryngologica, vol. 127, no. 3, pp. 273–279. https://doi.org/10.1080/00016480600868422
Turuwhenua, J., LinTun, Z., Norouzifard, M. et al. (2024) Automated visual acuity estimation by optokinetic nystagmus using a stepped sweep stimulus. Ophthalmic and Physiological Optics, vol. 44, no. 7, pp. 1500–1512. https://doi.org/10.1111/opo.13391
Van der Meulen, P. (1950) Vestibulaire en optokinetische nystagmus bij de duif. MD dissertation. Groningen, Rijksuniversiteit Groningen, 83 p.
Wade, N. J. (2021) Helmholtz at 200. i-Perception, vol. 12, no. 4, article 20416695211022374. https://doi.org/10.1177/20416695211022374
Wade, N. J., Brožek, J. (2001) Purkinje’s vision: The dawning of neuroscience. London: Lawrence Erlbaum Publ., 151 p.
Wegner, T. G. G., Grenzebach, J., Bendixen, A., Einhäuser, W. (2021) Parameter dependence in visual pattern-component rivalry at onset and during prolonged viewing. Vision Research, vol. 182, pp. 69–88. https://doi.org/10.1016/j.visres.2020.12.006
Wibble, T. (2024) Temporal dynamics of ocular torsion and vertical vergence during visual, vestibular, and visuovestibular rotations. Experimental Brain Research, vol. 242, no. 6, pp. 1469–1479. https://doi.org/10.1007/s00221-024-06842-7
Wibble, T., Engström, J., Pansell, T. (2020) Visual and vestibular integration express summative eye movement responses and reveal higher visual acceleration sensitivity than previously described. Investigative Ophthalmology & Visual Science, vol. 61, no. 5, article 4. https://doi.org/10.1167/iovs.61.5.4
Winter, D. A., Thomas, S. J., Zeni, J. A. (2023) Biomechanics and motor control of human movement. 5th ed. Hoboken: Wiley Publ., 384 p.
XIII International ophthalmological congress, Amsterdam, September 5–13, 1929. (1929) British Journal of Ophthalmology, vol. 13, no. 9, pp. 450–451. https://doi.org/10.1136/bjo.13.9.450
Zhang, C., Triesch, J., Shi, B. E. (2016) An active-efficient-coding model of optokinetic nystagmus. Journal of Vision, vol. 16, no. 14, article 10. https://doi.org/10.1167/16.14.10
Zhao, J., Shi, L., Li, X. et al. (2025) Investigating the role of vestibular function in motion sickness and visually induced motion sickness by multiple vestibular function tests. Acta Oto-Laryngologica, pp. 1–10. https://doi.org/10.1080/00016489.2025.2486609
Zhu, B., Yang, M., Liu, X. et al. (2025) Assessing pediatric visual acuity with a computerized optokinetic nystagmus analyzer. Clinics (São Paulo), vol. 80, article 100671. https://doi.org/10.1016/j.clinsp.2025.100671
REFERENCES
Aleksandrov, V. V., Lemak, S. S., Tikhonova, K. V. et al. (2023) Biomekhatronika — kosmicheskie issledovaniya [Biomechatronics — space research]. Pilotiruemye polety v kosmos — Manned Spaceflight, no. 4 (49), pp. 77–94. (In Russian)
Aoki, S., Kawano, A., Terao, M., Murakami, I. (2016) Time dilation in a perceptually jittering dot pattern. Journal of Vision, vol. 16, no. 14, article 2. https://doi.org/10.1167/16.14.2 (In English)
Apaev, A. V. (2021) Nistagm: rasprostranennost’, klassifikatsiya, patogenez (obzor literatury) [Prevalence, classification, and pathogenesis of nystagmus]. Rossijskaya pediatricheskaya oftal’mologiya — Russian Pediatric Ophthalmology, vol. 16, no. 2, pp. 53–60. https://doi.org/10.17816/rpoj70982 (In Russian)
Babcock, H. L. (1917) Some observations on the Bárány tests as applied to aviators. Boston Medical and Surgical Journal, vol. 177, no. 24, pp. 840–843. https://doi.org/10.1056/NEJM191712131772404 (In English)
Bergmann, F., Chaimovitz, M., Gutman, J., Zelig, S. (1963) Optokinetic nystagmus and its interaction with central nystagmus. The Journal of Physiology, vol. 168, no. 2, pp. 318–331. https://doi.org/10.1113/jphysiol.1963.sp007194 (In English)
Berthoz, A., Lacour, M., Soechting, J. F., Vidal, P. P. (1979) The role of vision in the control of posture during linear motion. Progress in Brain Research, vol. 50, pp. 197–209. https://doi.org/10.1016/S0079-6123(08)60820-1 (In English)
Blaginin, A. A., Sinelnikov, S. N., Lyashed’ko, S. P., Glushkov, R. S. (2018) Vliyanie optokineticheskogo i statokineticheskogo vozdejstvij na prostranstvennuyu orientirovku operatorov aviatsionnogo profilya [Influence of the opticokinetic and statokinetic effects on the spatial orientation of the aviation profile operators]. Voennо-meditsinskij zhurnal — Military Medical Journal, vol. 339, no. 2, pp. 44–49. (In Russian)
Bonato, F., Bubka, A., Palmisano, S. et al. (2008) Vection change exacerbates simulator sickness in virtual environments. Presence: Teleoperators and Virtual Environments, vol. 17, no. 3, pp. 283–292. https://doi.org/10.1162/pres.17.3.283 (In English)
Bornmann, L., Haunschild, R., Mutz, R. (2021) Growth rates of modern science: A latent piecewise growth curve approach to model publication numbers from established and new literature databases. Humanities & Social Sciences Communications, vol. 8, no. 1, article 224. https://doi.org/10.1057/s41599-021-00903-w (In English)
Borries, G. (1926) Fixation und Nystagmus [Fixation and nystagmus]. Kopenhagen: Th. Linds Eftf. Publ., 112 p. (In German)
Brandt, T., Strupp, M. (2005) General vestibular testing. Clinical Neurophysiology, vol. 116, no. 2, pp. 406–426. https://doi.org/10.1016/j.clinph.2004.08. (In English)
Cavero, I., Guillon, J.-M., Holzgrefe, H. H. (2017) Reminiscing about Jan Evangelista Purkinje: A pioneer of modern experimental physiology. Advances in Physiology Education, vol. 41, no. 4, pp. 528–538. https://doi.org/10.1152/advan.00068.2017 (In English)
Chaudhary, S., Saywell, N., Taylor, D. (2022) The differentiation of self-motion from external motion is a prerequisite for postural control: A narrative review of visual-vestibular interaction. Frontiers in Human Neuroscience, vol. 16, article 697739. https://doi.org/10.3389/fnhum.2022.697739 (In English)
Collins, H. (2010) Tacit and explicit knowledge. Chicago: University of Chicago Press, 200 p. (In English)
Cooper, N., Cant, I., White, M. D., Meyer, G. F. (2018) Perceptual assessment of environmental stability modulates postural sway. PLoS One, vol. 13, no. 11, article e0206218. https://doi.org/10.1371/journal.pone.0206218 (In English)
De Blasiis, P., Fullin, A., De Girolamo, C. I. et al. (2024) Posture and vision: How different distances of viewing target affect postural stability and plantar pressure parameters in healthy population. Heliyon, vol. 10, no. 21, article e39257. https://doi.org/10.1016/j.heliyon.2024.e39257 (In English)
De Souza, M. T., da Silva, M. D., de Carvalho, R. (2010) Integrative review: What is it? How to do it? Einstein (São Paulo), vol. 8, no. 1-1, pp. 102–106. https://doi.org/10.1590/s1679-45082010rw1134 (In Portuguese)
Dichgans, J., Brandt, T. (1973) Optokinetic motion sickness and pseudo-Coriolis effects induced by moving visual stimuli. Acta Oto-Laryngologica, vol. 76, no. 1-6, pp. 339–348. https://doi.org/10.3109/00016487309121519 (In English)
Dichgans, J., Held, R., Young, L. R., Brandt, T. (1972) Moving visual scenes influence the apparent direction of gravity. Science, vol. 178, no. 4066, pp. 1217–1219. https://doi.org/10.1126/science.178.4066.1217 (In English)
Dieterich, M., Brandt, T. (2015) The bilateral central vestibular system: Its pathways, functions, and disorders. Annals of the New York Academy of Sciences, vol. 1343, no. 1, pp. 10–26. https://doi.org/10.1111/nyas.12585 (In English)
Du, J., DiNicola, L. M., Angeli, P. A. et al. (2024) Organization of the human cerebral cortex estimated within individuals: Networks, global topography, and function. Journal of Neurophysiology, vol. 131, no. 6, pp. 1014–1082. https://doi.org/10.1152/jn.00308.2023 (In English)
Economides, J. R., Suh, Y.-W., Simmons, J. B. et al. (2020) Vertical optokinetic stimulation induces diagonal eye movements in patients with idiopathic infantile nystagmus. Investigative Ophthalmology & Visual Science, vol. 61, no. 6, article 14. https://doi.org/10.1167/iovs.61.6.14 (In English)
Enoksson, P. (1956) Optokinetic nystagmus in brain lesions. Acta Ophthalmologica, vol. 34, no. 3, pp. 163–184. https://doi.org/10.1111/j.1755-3768.1956.tb03347.x (In Swedish)
Garbutt, S., Han, Y., Kumar, A. N. et al. (2003) Vertical optokinetic nystagmus and saccades in normal human subjects. Investigative Ophthalmology & Visual Science, vol. 44, no. 9, pp. 3833–3841. https://doi.org/10.1167/iovs.03-0066 (In English)
Geisinger, D., Engelberg, K., Suarez, H. et al. (2022) Slower velocity perception with stronger optokinetic nystagmus: A paradoxical perception in virtual reality. Journal of the Neurological Sciences, vol. 441, article 120384. https://doi.org/10.1016/j.jns.2022.120384 (In English)
Gerb, J., Brandt, T., Huppert, D. (2023) Historical descriptions of nystagmus and abnormal involuntary eye movements in various ancient cultures. Science Progress, vol. 106, no. 3, article 00368504231191986. https://doi.org/10.1177/00368504231191986 (In English)
Glasauer, S., Schneider, E., Jahn, K. et al. (2005) How the eyes move the body. Neurology, vol. 65, no. 8, pp. 1291–1293. https://doi.org/10.1212/01.wnl.0000175132.01370.fc (In English)
Grokhovskii, S. S., Kubryak, O. V. (2018) Metod integral’noj otsenki effektivnosti regulyatsii pozy cheloveka [A method for integral assessment of the effectiveness of posture regulation in humans]. Meditsinskaya tekhnika — Biomedical Engineering, vol. 52, no. 2, pp. 138–141. https://doi.org/10.1007/s10527-018-9799-7 (In Russian)
Guerraz, M., Bronstein, A. M. (2008) Ocular versus extraocular control of posture and equilibrium. Neurophysiologie Clinique / Clinical Neurophysiology, vol. 38, no. 6, pp. 391–398. https://doi.org/10.1016/j.neucli.2008.09.007 (In French)
Gurfinkel’, V. S., Kots, Ya. M., Shik, M. L. (1965) Regulyatsiya pozy cheloveka [Regulation of human posture]. Moscow: Nauka Publ., 256 p. (In Russian)
Hale, D. E., Reich, S., Gold, D. (2024) Optokinetic nystagmus: Six practical uses. Practical Neurology, vol. 24, no. 4, pp. 285–288. https://doi.org/10.1136/pn-2023-003772 (In English)
Harcourt, B. (1969) Special forms of examination. Proceedings of the Royal Society of Medicine, vol. 62, no. 6, pp. 557–561. https://doi.org/10.1177/003591576906200612 (In English)
Hentze, M., Hougaard, D. D., Kingma, H. (2025) The intra-examiner variability in and accuracy of traditional manual diagnostics of benign paroxysmal positional vertigo: A prospective observational cohort study. Journal of Clinical Medicine, vol. 14, no. 2, article 434. https://doi.org/10.3390/jcm14020434 (In English)
Hogenhuis, L. A. H. (2008) Book VIII — ‘On the origin of movement’. History. In: Cognition and recognition: On the origin of movement. Leiden: Brill Publ., pp. 301–322. https://doi.org/10.1163/ej.9789004168367.i-353.58 (In English)
Illarionova, E. M., Gribova, N. P. (2022) Vestibulyarnaya migren’ [Vestibular migraine]. Zhurnal nevrologii i psikhiatrii im. S. S. Korsakova — S. S. Korsakov Journal of Neurology and Psychiatry, vol. 122, no. 5, pp. 78–83. https://doi.org/10.17116/jnevro202212205178 (In Russian)
Jacobson, G. P., Shepard, N. T., Barin, K. et al. (2021) Balance function assessment and management. 3rd ed. San Diego: Plural Publ., 717 p. (In English)
Kanari, K., Kikuchi, M. (2025) OKN and pupillary response modulation by gaze and attention shifts. Journal of Eye Movement Research, vol. 18, no. 2, article 11. https://doi.org/10.3390/jemr18020011 (In English)
Kanari, K., Sakamoto, K., Kaneko, H. (2017) Effect of visual attention on the properties of optokinetic nystagmus. PLoS One, vol. 12, no. 4, article e0175453. https://doi.org/10.1371/journal.pone.0175453 (In English)
Kassavetis, P., Kaski, D., Anderson, T., Hallet, M. (2022) Eye movement disorders in movement disorders. Movement Disorders Clinical Practice, vol. 9, no. 3, pp. 284–295. https://doi.org/10.1002/mdc3.13413 (In English)
Keshavarz, B., Riecke, B. E., Hettinger, L. J., Campos, J. L. (2015) Vection and visually induced motion sickness: How are they related? Frontiers in Psychology, vol. 6, article 472. https://doi.org/10.3389/fpsyg.2015.00472 (In English)
Kislyakov, V. A., Neverov, V. P. (1966) Reaktsiya glazodvigatel’noj sistemy na dvizhenie ob’ektov v pole zreniya: optokineticheksij nistagm [The reaction of the oculomotor system to the movement of objects in sight. Optokinetic nystagmus]. Moscow; Leningrad: Nauka Publ., 53 p. (In Russian)
Knapp, C. M., Proudlock, F. A., Gottlob, I. (2013) OKN asymmetry in human subjects: A literature review. Strabismus, vol. 21, no. 1, pp. 37–49. https://doi.org/10.3109/09273972.2012.762532 (In English)
Komagata, J., Sugiura, A., Takamura, H. et al. (2021) Effect of optokinetic stimulation on weight-bearing shift in standing and sitting positions in stroke patients. European Journal of Physical and Rehabilitation Medicine, vol. 57, no. 1, pp. 13–23. https://doi.org/10.23736/S1973-9087.20.06184-5 (In English)
Konijnenberg, J. J., Kingma, H. (1995) Visuo-vestibular interaction measurements: An alternative for rotation tests with better discriminatory power? Acta Oto-Laryngologica, vol. 115-1, suppl. 520, pp. 194–198. https://doi.org/10.3109/00016489509125226 (In English)
Konovalova, N. G., Artem’ev, A. A., Axmetzyanov, R. E. (2021) Osobennosti postural’noj regulyatsii podrostkov, zanimayushchikhsya estradnym tantsom, po dannym stabilometrii [Postural regulation of teenagers performing pop dance, according to stabilometry data]. Sportivnaya meditsina: nauka i praktika — Sports Medicine: Research and Practice, vol. 11, no. 3, pp. 28–33. https://doi.org/10.47529/2223-2524.2021.3.9 (In Russian)
Koskin, S. A., Kovalskaya, A. A. (2012) Ob’ektivnoe izmerenie ostroty zreniya na osnove optokineticheskogo nistagma. Sovremennye metody nistagmografii [Optokinetic nystagmus based objective visual acuity measurment. Modern nystagmography methods]. Oftal’mologicheskie vedomosti — Ophthalmology Reports, vol. 5, no. 1, pp. 52–57. (In Russian)
Kruchinin, P. A., Kruchinina, A. P., Kudryashov, I. A. et al. (2022) Kolichestvennaya otsenka izmeneniya funktsional’nogo sostoyaniya cheloveka za vremya poleta letatel’nogo apparata [Quantifi cation of changes in the functional status of a person during the aircraft flight]. Mekhatronika, avtomatizatsiya, upravlenie, vol. 23, no. 12, pp. 651–660. https://doi.org/10.17587/mau.23.651-660 (In Russian)
Kryukov, A. I., Gurov, A. V. (2018) Kafedra otorinolaringologii lechebnogo fakul’teta Rossijskogo natsional’nogo issledovatel’skogo universiteta im. N. I. Pirogova Minzdrava Rossii: ot istokov do sovremennosti [Department of Otorhinolaryngology of the Faculty of General Medicine, N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation: From the beginning to the present time]. Vestnik otorinolaringologii — Russian Bulletin of Otorhinolaryngology, vol. 83, no. 1, pp. 4–10. https://doi.org/10.17116/otorino20188314-10 (In Russian)
Kubryak, O. V. (2020) Kak tekhnika predshestvuet nauke (na primere silovykh platform) [How technology precedes science (through the example of force plates)]. Gumanitarnyj vestnik — Humanities Bulletin of BMSTU, no. 2 (82), pp. 1–13. https://doi.org/10.18698/2306-8477-2020-2-656 (In Russian)
Kubryak, O. V. (2025) Test “limita stabil’nosti” vertikal’noj pozy cheloveka na stabiloplatforme [The Limit of Stability: A test for assessing human upright posture control using stabilometry]. Integrativnaya fiziologiya — Integrative Physiology, vol. 6, no. 1, pp. 26–40. https://doi.org/10.33910/2687-1270-2025-6-1-26-40 (In Russian)
Kubryak, O. V., Grohovsky, S. S. (2015) Shift in vertical stance parameters in humans viewing different images. Human Physiology, vol. 41, no. 2, pp. 162–165. https://doi.org/10.1134/S0362119715010089 (In English)
Kubryak, O. V., Mezenchuk, A. I., Pak, S. A. (2023) Primenenie stabiloplatform i korpus ekspertov v rossijskikh dissertatsiyakh za 2016–2022 gody [The application of force plates and the community of experts in Russian dissertations for 2016–2022]. Fizioterapiya, bal’neologiya i reabilitatsiya, vol. 22, no. 2, pp. 105–114. https://doi.org/10.17816/430299 (In Russian)
Leigh, R. J., Zee, D. S. (2015) The neurology of eye movements. 5th ed. New York: Oxford University Press, 1136 p. https://doi.org/10.1093/med/9780199969289.001.0001 (In English)
Lewkonia, I. (1969) Objective assessment of visual acuity by induction of optokinetic nystagmus. British Journal of Ophthalmology, vol. 53, no. 9, pp. 641–644. https://doi.org/10.1136/bjo.53.9.641 (In English)
Lilenko, S. V., Sugarova, S. B., Lilenko, A. S., Kostevich, I. V. (2023) Skrining-testirovanie i komp’yuterizirovannaya vestibulometriya pri vestibulyarnom nejronite [Screening testing and computerized vestibulometry in vestibular neuronitis]. Meditsinskij sovet — Medical Council, vol. 17, no. 6, pp. 104–111. https://doi.org/10.21518/ms2022-007 (In Russian)
London, R. (1982) Optokinetic nystagmus: A review of pathways, techniques and selected diagnostic applications. Journal of the American Optometric Association, vol. 53, no. 10, pp. 791–798. (In English)
Luchikhin, L. A., Skvortsov, D. V., Kononova, N. A., Vostokov, A. V. (2006) Posturograficheskaya ekspress-diagnostika funktsional’nogo sostoyaniya sistemy ravnovesiya v vestibulologii [Posturographic rapid diagnosis of a vestibular function in vestibulology]. Vestnik otorinolaringologii — Russian Bulletin of Otorhinolaryngology, no. 1, pp. 13–17. https://pubmed.ncbi.nlm.nih.gov/16482003 (In Russian)
Luo, H., Wang, X., Fan, M. et al. (2018) The effect of visual stimuli on stability and complexity of postural control. Frontiers in Neurology, vol. 9, article 48. https://doi.org/10.3389/fneur.2018.00048 (In English)
Mangalam, M., Kelty-Stephen, D. G. (2021) Hypothetical control of postural sway. Journal of the Royal Society Interface, vol. 18, no. 176, article 20200951. https://doi.org/10.1098/rsif.2020.0951 (In English)
Maryenko, I. P., Mozheiko, M. P., Likhaсhev, S. A. (2022) Algoritm vybora metodov fizicheskoj reabilitatsii u patsientov s ataksiej [Algorithm for choosing recover methods of physical rehabilitation in patients with ataxia]. Nevrologiya i nejrokhirurgiya. Vostochnaya Evropa — Neurology and Neurosurgery. Eastern Europe, vol. 12, no. 4, pp. 414–421. https://doi.org/10.34883/PI.2022.12.4.034 (In Russian)
McAssey, M., Brandt, T., Dieterich, M. (2022) EEG analysis of the visual motion activated vection network in left-and right-handers. Scientific Reports, vol. 12, no. 1, article 19566. https://doi.org/10.1038/s41598-022-21824-x (In English)
Min, X., Rehman, F. U., Jing, W. et al. (2024) Preliminary study on the computer-based optokinetic nystagmus analyzer to detect the visual acuity of preschool children. Indian Journal of Ophthalmology, vol. 72, suppl. 2, pp. S162–S166. https://doi.org/10.4103/IJO.IJO_2683_23 (In English)
Miura, K., Takemura, A., Taki, M., Kawano, K. (2019) Model of optokinetic responses involving two different visual motion processing pathways. Progress in Brain Research, vol. 248, pp. 329–340. https://doi.org/10.1016/bs.pbr.2019.02.005 (In English)
Mudry, A. (2000) Robert Barany (1876–1936). Journal of Neurology, Neurosurgery & Psychiatry, vol. 68, no. 4, p. 507. https://doi.org/10.1136/jnnp.68.4.507 (In English)
Murakami, I., Cavanagh, P. (1998) A jitter after-effect reveals motion-based stabilization of vision. Nature, vol. 395, no. 6704, pp. 798–801. https://doi.org/10.1038/27435 (In English)
Murakami, I., Cavanagh, P. (2001) Visual jitter: Evidence for visual-motion-based compensation of retinal slip due to small eye movements. Vision Research, vol. 41, no. 2, pp. 173–186. https://doi.org/10.1016/S0042-6989(00)00237-6 (In English)
Murphy, K. M., Monteiro, L. (2024) Anatomical and molecular development of the human primary visual cortex. Frontiers in Cellular Neuroscience, vol. 18, article 1427515. https://doi.org/10.3389/fncel.2024.1427515 (In English)
Nashner, L., Berthoz, A. (1978) Visual contribution to rapid motor responses during postural control. Brain Research, vol. 150, no. 2, pp. 403–407. https://doi.org/10.1016/0006-8993(78)90291-3 (In English)
Nashner, L. M., Black, F. O., Wall, C. III (1982) Adaptation to altered support and visual conditions during stance: Patients with vestibular deficits. Journal of Neuroscience, vol. 2, no. 5, pp. 536–544. https://doi.org/10.1523/JNEUROSCI.02-05-00536.1982 (In English)
Nasretdinova, M. T. (2019) Izmeneniya stabilometricheskikh pokazatelej u patsientov s sistemnym golovokruzheniem [Changes in stabilometric parameters in patients with systemic dizziness]. Otorinolaringologiya. Vostochnaya Evropa — Otorhinolaryngology. Eastern Europe, vol. 9, no. 2, pp. 135–139. (In Russian)
Nishino, L. K., Rocha, G. D., de Souza, T. S. A. et al. (2021) Protocol for static posturography with dynamic tests in individuals without vestibular complaints using the Horus system. Codas, vol. 33, no. 3, article e20190270. https://doi.org/10.1590/2317-1782/20202019270 (In Portuguese)
Nürnberger, M., Klingner, C., Witte, O. W., Brodoehl, S. (2021) Mismatch of visual-vestibular information in virtual reality: Is motion sickness part of the brains attempt to reduce the prediction error? Frontiers in Human Neuroscience, vol. 15, article 757735. https://doi.org/10.3389/fnhum.2021.757735 (In English)
Palchun, V. T., Luchikhin, L. A., Patrin, A. F. (1984) Sposob diagnostiki skrytykh vestibulyarnykh rasstrojstv [Method of diagnosis of closed vestibular disturbances]. Patent SU1126285A1. Register date 27.01.1983. Granted by Rospatent. (In Russian)
Pamyati L’va Aleksandrovicha Luchikhina [In memory of Lev Aleksandrovich Luchikhin]. (2014) Vestnik otorinolaringologii — Russian Bulletin of Otorhinolaryngology, no. 6, p. 87. https://doi.org/10.17116/otorino2014687 (In Russian)
Papanagnu, E., Brodsky, M. C. (2014) Is there a role for optokinetic nystagmus testing in contemporary orthoptic practice? Old tricks and new perspectives. American Orthoptic Journal, vol. 64, no. 1, pp. 1–10. https://doi.org/10.3368/aoj.64.1.1 (In English)
Parfenov, V. A., Zamergrad, M. V., Zaitseva, O. V. et al. (2024) Dobrokachestvennoe paroksizmal’noe pozitsionnoe golovokruzhenie: diagnostika, lechenie, reabilitatsiya. Sovremennye predstavleniya o roli betagistina v kompleksnom lechenii patsientov s dobrokachestvennym paroksizmal’nym pozitsionnym golovokruzheniem [Benign paroxysmal positional vertigo: Diagnosis, treatment, rehabilitation. Current concepts on the role of betahistine in the complex treatment of patients with benign paroxysmal positional vertigo]. Nevrologiya, nejropsikhiatriya, psikhosomatika — Neurology, Neuropsychiatry, Psychosomatics, vol. 16, no. 5, pp. 120–130. https://doi.org/10.14412/2074-2711-2024-5-120-130 (In Russian)
Pereyaslov, G. A., Sliva, S. S. (2002) Metodicheskoe obespechenie stabiloanalizatora “Stabilan 01” [Technical support for Stabilan 01 stabilometer]. Izvestiya YuFU. Tekhnicheskie nauki — Izvestiya SFedU. Engineering Sciences, vol. 28, no. 5, pp. 82–88. (In Russian)
Perucca, L., Robecchi Majnardi, A., Frau, S., Scarano, S. (2021) Normative data for the NeuroCom® Sensory Organization Test in subjects aged 80–89 years. Frontiers in Human Neuroscience, vol. 15, article 761262. https://doi.org/10.3389/fnhum.2021.761262 (In English)
Peterka, R. J. (2002) Sensorimotor integration in human postural control. Journal of Neurophysiology, vol. 88, no. 3, pp. 1097–1118. https://doi.org/10.1152/jn.2002.88.3.1097 (In English)
Pischel, K. (1912) Barany’s investigation on localization in the cerebellum. Cal State J Med, vol. 10, no. 9, pp. 378–379. (In English)
Pletcher, E. R., Williams, V. J., Abt, J. P. et al. (2017) Normative data for the NeuroCom Sensory Organization Test in US Military Special Operations Forces. Journal of Athletic Training, vol. 52, no. 2, pp. 129–136. https://doi.org/10.4085/1062-6050-52.1.05 (In English)
Redfern, M. S., Yardley, L., Bronstein, A. M. (2001) Visual influences on balance. Journal of Anxiety Disorders, vol. 15, no. 1–2, pp. 81–94. https://doi.org/10.1016/S0887-6185(00)00043-8 (In English)
Reinecke, R. D. (1961) Review of optokinetic nystagmus from 1954–1960. Archives of Ophthalmology, vol. 65, no. 4, pp. 609–615. https://doi.org/10.1001/archopht.1961.01840020611028 (In English)
Reynders, M., Bos, J., Mert, A. et al. (2025) Feasibility of virtual reality to induce and measure optokinetic after-nystagmus (OKAN): A pilot study. Scientific Reports, vol. 15, no. 1, article 13471. https://doi.org/10.1038/s41598-025-96915-6 (In English)
Reynders, M., Van der Sypt, L., Bos, J. et al. (2024) Systematic review and meta-analysis of the diagnostic value of optokinetic after-nystagmus in vestibular disorders. Frontiers in Neurology, vol. 15, article 1367735. https://doi.org/10.3389/fneur.2024.1367735 (In English)
Robinson, D. A. (2022) The behavior of the optokinetic system. Progress in Brain Research, vol. 267, no. 1, pp. 215–230. https://doi.org/10.1016/bs.pbr.2021.10.010 (In English)
Roelofs, C. O. (1954) Optokinetic nystagmus. Documenta Ophthalmologica, vol. 7-8, pp. 579–650. https://doi.org/10.1007/BF00238148 (In Dutch)
Rubinstein, N. J., Abel, L. A. (2011) Optokinetic nystagmus suppression as an index of the allocation of visual attention. Investigative Ophthalmology & Visual Science, vol. 52, no. 1, pp. 462–467. https://doi.org/10.1167/iovs.10-6016 (In English)
Sadeghpour, S., Otero-Millan, J. (2020) Torsional component of microsaccades during fixation and quick phases during optokinetic stimulation. Journal of Eye Movement Research, vol. 13, no. 5, article 5. https://doi.org/10.16910/jemr.13.5.5 (In English)
Sedochenko, S. V., Savinkova, O. N., Popova, I. E. (2023) Analiz bilateral’nykh stabilometricheskikh kharakteristik kvalifitsirovannykh prygunov v vodu pri vozdejstvii optokineticheksogo nistagma [Analysis of bilateral force platform measurements in skilled high divers under the influence of optokinetic nystagmus]. Chelovek. Sport. Meditsina — Human. Sport. Medicine, vol. 23, no. S2, pp. 19–23. (In Russian)
Tarnutzer, A. A., Straumann, D. (2018) Nystagmus. Current Opinion in Neurology, vol. 31, no. 1, pp. 74–80. https://doi.org/10.1097/WCO.0000000000000517 (In English)
Tsutsumi, T., Inaoka, H., Fukuoka, Y. et al. (2007) Cross-coupling in a body-translating reaction: Interaural optokinetic stimulation reflects a gravitational cue. Acta Oto-Laryngologica, vol. 127, no. 3, pp. 273–279. https://doi.org/10.1080/00016480600868422 (In English)
Turuwhenua, J., LinTun, Z., Norouzifard, M. et al. (2024) Automated visual acuity estimation by optokinetic nystagmus using a stepped sweep stimulus. Ophthalmic and Physiological Optics, vol. 44, no. 7, pp. 1500–1512. https://doi.org/10.1111/opo.13391 (In English)
Van der Meulen, P. (1950) Vestibulaire en optokinetische nystagmus bij de duif [Vestibular and optokinetic nystagmus in the pigeon]. MD dissertation. Groningen, Rijksuniversiteit Groningen, 83 p. (In Dutch)
Vavilova, A. A. (2022) O nekotorykh yarkikh stranitsakh v istorii vestibulologii XX veka. Istoricheskij obzor, diskussionnye voprosy. Chast’ 2. Vyzovy aviakosmicheskoj meditsiny [On some bright pages in history of vestibulology of 20th century. Historical review, controversial issues. Part 2. Challenges of aerospace medicine]. Rossijskaya otorinolaringologiya — Russian Otorhinolaryngology, vol. 21, no. 3, pp. 137–147. https://doi.org/10.18692/1810-4800-2022-3-137-147 (In Russian)
Wade, N. J. (2021) Helmholtz at 200. i-Perception, vol. 12, no. 4, article 20416695211022374. https://doi.org/10.1177/20416695211022374 (In English)
Wade, N. J., Brožek, J. (2001) Purkinje’s vision: The dawning of neuroscience. London: Lawrence Erlbaum Publ., 151 p. (In English)
Wegner, T. G. G., Grenzebach, J., Bendixen, A., Einhäuser, W. (2021) Parameter dependence in visual pattern-component rivalry at onset and during prolonged viewing. Vision Research, vol. 182, pp. 69–88. https://doi.org/10.1016/j.visres.2020.12.006 (In English)
Wibble, T. (2024) Temporal dynamics of ocular torsion and vertical vergence during visual, vestibular, and visuovestibular rotations. Experimental Brain Research, vol. 242, no. 6, pp. 1469–1479. https://doi.org/10.1007/s00221-024-06842-7 (In English)
Wibble, T., Engström, J., Pansell, T. (2020) Visual and vestibular integration express summative eye movement responses and reveal higher visual acceleration sensitivity than previously described. Investigative Ophthalmology & Visual Science, vol. 61, no. 5, article 4. https://doi.org/10.1167/iovs.61.5.4 (In English)
Winter, D. A., Thomas, S. J., Zeni, J. A. (2023) Biomechanics and motor control of human movement. 5th ed. Hoboken: Wiley Publ., 384 p. (In English)
XIII International ophthalmological congress, Amsterdam, September 5–13, 1929. (1929) British Journal of Ophthalmology, vol. 13, no. 9, pp. 450–451. https://doi.org/10.1136/bjo.13.9.450 (In English)
Zhang, C., Triesch, J., Shi, B. E. (2016) An active-efficient-coding model of optokinetic nystagmus. Journal of Vision, vol. 16, no. 14, article 10. https://doi.org/10.1167/16.14.10 (In English)
Zhao, J., Shi, L., Li, X. et al. (2025) Investigating the role of vestibular function in motion sickness and visually induced motion sickness by multiple vestibular function tests. Acta Oto-Laryngologica, pp. 1–10. https://doi.org/10.1080/00016489.2025.2486609 (In English)
Zhu, B., Yang, M., Liu, X. et al. (2025) Assessing pediatric visual acuity with a computerized optokinetic nystagmus analyzer. Clinics (São Paulo), vol. 80, article 100671. https://doi.org/10.1016/j.clinsp.2025.100671 (In English)
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Oleg V. Kubryak

This work is licensed under a Creative Commons Attribution 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Creative Commons Attribution 4.0 International (CC BY 4.0).
This license permits an unlimited number of users to copy and redistribute the material in any medium or format, and to remix, transform, and build upon the material for any purpose, including commercial use.
This license retains copyright for the authors but allows others to freely distribute, use, and adapt the work, on the mandatory condition that appropriate credit is given. Users must provide a correct link to the original publication in our journal, cite the authors' names, and indicate if any changes were made.
Copyright remains with the authors. The CC BY 4.0 license does not transfer rights to third parties but rather grants users prior permission for use, provided the attribution condition is met. Any use of the work will be governed by the terms of this license.





