Olfactory dysfunction as an indicator of early coronavirus infection

Authors

DOI:

https://doi.org/10.33910/2687-1270-2020-1-3-187-195

Keywords:

COVID-19, anosmia, standard olfactory tests UPSIT, Sniffin’ Sticks, olfactory neuroepithelium

Abstract

Recently published studies provide data on a sudden loss of smell in patients with coronavirus infection. This review discusses the results of a patient survey that confirms the association between COVID-19 infection and anosmia. Anosmia is recognized as one of the most obvious symptoms. The article emphasizes that olfactory dysfunction is detected at an early stage of the disease and precedes its main symptoms. Therefore, the loss of mell can be considered as a marker of the preclinical manifestation of coronavirus infection. The review discusses the mechanisms underlying olfactory dysfunction in the olfactory neuroepithelium and central nervous system. Currently, we face the need for an objective assessment of a large sample of patients infected with COVID-19 at the preclinical stage of the disease. Olfactory dysfunction is diagnosed through standard olfactory tests. The tests allow to obtain quantitative data on the degree of disfunction of the sense of smell. In the absence of medical tests for coronavirus, olfactory sensitivity testing can become a tool for detecting infection at the initial stage of the disease as well as identifying asymptomatic patients for their timely isolation.

References

Abdennour, L., Zeghal, C., Deme, M., Puybasset, L. (2012) Interaction cerveau-poumon [Interaction brain-lungs]. Annales Francaises d’Anesthesie et de Reanimation, vol. 31, no. 6, pp. e101–e107. PMID: 22694980. DOI: 10.1016/j.annfar.2012.04.013 (In French)

Bagheri, S. H., Asghari, A., Farhadi, M. et al. (2020) Coincidence of COVID-19 epidemic and olfactory dysfunction outbreak in Iran. Medical Journal of The Islamic Republic of Iran, vol. 34, no. 1, pp. 446–452. DOI: 10.1101/2020.03.23.20041889 (In English)

Barber, C. N., Coppola, D. M. (2015) Compensatory plasticity in the olfactory epithelium: Age, timing, and reversibility. Journal of Neurophysiology, vol. 114, no. 3, pp. 2023–2032. PMID: 26269548. DOI: 10.1152/jn.00076.2015 (In English)

Barnett, E. M., Perlman, S. (1993) The olfactory nerve and not the trigeminal nerve is the major site of CNS entry for mouse hepatitis virus, strain JHM. Virology, vol. 194, no. 1, pp. 185‒191. PMID: 8386871. DOI: 10.1006/viro.1993.1248 (In English)

Bihun, C. G., Percy, D. H. (1995) Morphologic changes in the nasal cavity associated with sialodacryoadenitis virus infection in the Wistar rat. Veterinary Pathology, vol. 32, no. 1, pp. 1–10. PMID: 7725592. DOI: 10.1177/030098589503200101 (In English)

Bohmwald, K., Galvez, N.M.S., Rios, M., Kalergis, A. M. (2018) Neurologic alterations due to respiratory virus infections. Frontiers in Cellular Neuroscience, vol. 12, article 386. PMID: 30416428. DOI: 10.3389/fncel.2018.00386 (In English)

Brann, D. H., Tsukahara, T., Weinreb, C. et al. (2020) Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Science Advances, vol. 6, no. 31, article eabc5801. DOI: 10.1126/sciadv.abc5801 (In English)

Chen, C. R., Kachramanoglou, C., Li, D. et al. (2014) Anatomy and cellular constituents of the human olfactory mucosa: A review. Journal of Neurological Surgery Part B: Skull Base, vol. 75, no. 5, pp. 293–300. PMID: 25302141. DOI: 10.1055/s-0033-1361837 (In English)

Choi, R., Goldstein, B. J. (2018) Olfactory epithelium: Cells, clinical disorders, and insights from an adult stem cell niche. Laryngoscope Investigative Otolaryngology, vol. 3, no 1, pp. 35–42. PMID: 29492466. DOI: 10.1002/lio2.135 (In English)

Croy, I., Symmank, A., Schellong, J. et al. (2014) Olfaction as a marker for depression in humans. Journal of Affective Disorders, vol. 160, pp. 80–86. PMID: 24445134. DOI: 10.1016/j.jad.2013.12.026 (In English)

Desforges, M., Coupanec, A. L., Dubeau, P. et al. (2020) Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses, vol. 12, no. 1, article 14. PMID: 31861926. DOI: 10.3390/v12010014 (In English)

Doty, R. L. (2019) Systemic diseases and disorders. Handbook of Clinical Neurology, vol. 164, pp. 361–387. PMID: 31604558. DOI: 10.1016/B978-0-444-63855-7.00021-6 (In English)

Doty, R. L., Shaman, P., Dann, M. (1984) Development of the University of Pennsylvania smell identification test: A standardized microencapsulated test of olfactory function. Physiology & Behavior, vol. 32, no. 3, pp. 489–502. PMID: 6463130. DOI: 10.1016/0031-9384(84)90269-5 (In English)

Doty, R. L., Wylie, C., Potter, M. (2019) Clinical validation of the olfactory detection threshold module of the Snap & Sniff® olfactory test system. International Forum of Allergy & Rhinology, vol. 9, no. 9, pp. 986–992. PMID: 31283113. DOI: 10.1002/alr.22377 (In English)

Eriksson, C., Brittebo, E. B. (1995) Dichlobenil in the fetal and neonatal mouse olfactory mucosa. Toxicology, vol. 96, no. 2, pp. 93–104. PMID: 7886688. DOI: 10.1016/0300-483x(94)02914-g (In English)

Gilbert, P. E., Pirogovsky, E., Brushfield, A. M. et al. (2009) Age-related changes in associative learning for olfactory and visual stimuli in rodents. Annals of the New York Academy of Sciences, vol. 1170, no. 1, pp. 718–724. PMID: 19686218. DOI: 10.1111/j.1749-6632.2009.03929.x (In English)

Goldstein, B. J., Goss, G. M., Choi, R. et al. (2016) Contribution of Polycomb group proteins to olfactory basal stem cell self-renewal in a novel c-KIT1 culture model and in vivo. Development, vol. 143, no. 23, pp. 4394–4404. PMID: 27789621. DOI: 10.1242/dev.142653 (In English)

Gu, J., Gong, E., Zhang, B. et al. (2005) Multiple organ infection and the pathogenesis of SARS. Journal of Experimental Medicine, vol. 202, no. 3, pp. 415–424. PMID: 16043521. DOI: 10.1084/jem.20050828 (In English)

Hoffmann, M., Kleine-Weber, H., Schroeder, S. et al. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, vol. 181, no. 2, pp. 271–280. PMID: 32142651. DOI: 10.1016/j.cell.2020.02.052 (In English)

Holbrook, E. H., Leopold, D. A. (2006) An updated review of clinical olfaction. Current Opinion in Otolaryngology & Head and Neck Surgery, vol. 14, no. 1, pp. 23–28. PMID: 16467634. DOI: 10.1097/01.moo.0000193174.77321.39 (In English)

Hopkins, C., Kumar, N. (2020) Loss of sense of smell as marker of COVID-19 infection. ENT UK. [Online]. Available at: https://www.entuk.org/loss-sense-smell-marker-covid-19-infection (accessed 20.06.2020). (In English)

Kallmann, F., Schoenfeld, W. A., Barrera, S. E. (1944) The genetic aspects of primary eunuchoidism. American Journal of Mental Deficiency, vol. 48, pp. 203–236. (In English)

Kern, R. C., Quinn, B., Rosseau, G., Farbman, A. I. (2000) Post-traumatic olfactory dysfunction. Laryngoscope, vol. 110, no. 12, pp. 2106–2109. PMID: 11129030. DOI: 10.1097/00005537-200012000-00025 (In English)

Kulaga, H. M., Leitch, C. C., Eichers, E. R. et al. (2004) Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nature Genetics, vol. 36, no. 9, pp. 994–998. PMID: 15322545. DOI: 10.1038/ng1418 (In English)

Layman, W. S., McEwen, D. P., Beyer, L. A. et al. (2009) Defects in neural stem cell proliferation and olfaction in Chd7 deficient mice indicate a mechanism for hyposmia in human CHARGE syndrome. Human Molecular Genetics, vol. 18, no. 11, pp. 1909–1923. PMID: 19279158. DOI: 10.1093/hmg/ddp112 (In English)

Leung, C. T., Coulombe, P. A., Reed, R. R. (2007) Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nature Neuroscience, vol. 10, no. 6, pp. 720–726. PMID: 17468753. DOI: 10.1038/nn1882 (In English)

Li, Y.-C., Bai, W.-Z., Hashikawa, T. (2020) The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. Journal of Medical Virology, vol. 92, no. 6, pp. 552–555. PMID: 32104915. DOI: 10.1002/jmv.25728 (In English)

Li, W., Moore, M. J., Vasilieva, N. et al. (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, vol. 426, no. 6965, pp. 450–454. PMID: 14647384. DOI: 10.1038/nature02145 (In English)

Lin, B., Coleman, J. H., Peterson, J. N. et al. (2017) injury induces endogenous reprogramming and dedifferentiation of neuronal progenitors to multipotency. Cell Stem Cell, vol. 21, no. 6, pp. 761–774. PMID: 29174332. DOI: 10.1016/j.stem.2017.09.008 (In English)

Mao, L., Jin, H., Wang, M. et al. (2020) Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China. JAMA Neurology, vol. 77, no. 6, pp. 683–690. DOI: 10.1001/jamaneurol.2020.1127 (In English)

Moein, Sh. T., Hashemian, S. M. R., Mansourafshar, B. et al. (2020) Smell dysfunction: A biomarker for COVID-19. International Forum of Allergy & Rhinology, vol. 10, no. 8, pp. 944–950. PMID: 32301284. DOI: 10.1002/alr.22587 (In English)

Mombaerts, P., Wang, F., Dulac, C. et al. (1996) Visualizing an olfactory sensory map. Cell, vol. 87, no. 4, pp. 675–686. PMID: 8929536. DOI: 10.1016/s0092-8674(00)81387-2 (In English) Mori, I. (2015) Transolfactory neuroinvasion by viruses threatens the human brain. Acta Virologica, vol. 59, no. 4, pp. 338–349. PMID: 26666182. DOI: 10.4149/av_2015_04_338 (In English)

Netland, J., Meyerholz, D. K., Moore, S. et al. (2008) Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. Journal of Virology, vol. 82, no. 15, pp. 7264–7275. PMID: 18495771. DOI: 10.1128/JVI.00737-08 (In English)

Nomura, T., Tokahashi, S., Ushiki, T. (2004) Cytoarchitecture of the normal rat olfactory epithelium: Light and scanning microscopic studies. Archives of Histolology and Cytollgy, vol. 67, no. 2, pp. 159–170. PMID: 15468955. DOI: 10.1679/aohc.67.159 (In English)

Oleszkiewicz, A., Schriever, V. A., Croy, I. et al. (2019) Updated Sniffin’ Sticks normative data based on an extended sample of 9139 subjects. European Archives of Oto-Rhino-Laryngology, vol. 276, no. 3, pp. 719–728. PMID: 30554358. DOI: 10.1007/s00405-018-5248-1 (In English)

Richard, M., Taylor, S. R., Greer, C.A. (2010) Age-induced disruption of selective olfactory bulb synaptic circuits. Proceedings of the National Academy of Sciences, vol. 107, no. 35, pp. 15613–15618. PMID: 20679234. DOI: 10.1073/pnas.1007931107 (In English)

Roisen, F. J., Klueber, K. M., Lu, C. L. et al. (2001) Adult human olfactory stem cells. Brain Research, vol. 890, no. 1, pp. 11–22. PMID: 11164764. DOI: 10.1016/s0006-8993(00)03016-x (In English)

Saito, H., Mimmack, M., Kishimoto, J. et al. (1998) Expression of olfactory receptors, G-proteins and AxCAMs during the development and maturation of olfactory sensory neurons in the mouse. Developmental Brain Research, vol. 110, no. 1, pp. 69–81. PMID: 9733924. DOI: 10.1016/s0165-3806(98)00096-0 (In English)

Schofield, P. W., Moore, T. M., Gardner, A. (2014) Traumatic brain injury and olfaction: A systematic review. Frontiers in Neurology, vol. 5, article 5. PMID: 24478752. DOI: 10.3389/fneur.2014.00005 (In English)

Seiden, A. M. (2004) Postviral olfactory loss. Otolaryngologic Clinics of North America, vol. 37, no. 6, pp. 1159–1166. PMID: 15563908. DOI: 10.1016/j.otc.2004.06.007 (In English)

Vernetti, P. M., Rossi, M., Cerquetti, D. et al. (2016) Comparison of olfactory identification patterns among Parkinson’s disease patients from different countries. Chemical Senses, vol. 41, no. 1, pp. 77–83. PMID: 26512070. DOI: 10.1093/chemse/bjv062 (In English)

Wheeler, D. L., Athmer, J., Meyerholz, D. K., Perlman, S. (2017) Murine olfactory bulb interneurons survive infection with a neurotropic coronavirus. Journal of Virology, vol. 91, no. 22, article e01099-17. PMID: 28835503. DOI: 10.1128/JVI.01099-17 (In English)

Williams, C. L., McIntyre, J. C., Norris, S. R. et al. (2014) Direct evidence for BBSome-associated intraflagellar transport reveals distinct properties of native mammalian cilia. Nature Communications, vol. 5, article 5813. PMID: 25504142. DOI: 10.1038/ncomms6813 (In English)

Wintermann, G.-B., Donix, M., Joraschky, P. et al. (2013) Altered olfactory processing of stress related body odors and artificial odors in patients with panic disorder. PLoS One, vol. 8, no. 9, article e74655. PMID: 24086358. DOI: 10.1371/journal.pone.0074655 (In English)

Wrobel, B. B., Leopold, D. A. (2004) Clinical assessment of patients with smell and taste disorders. Otolaryngologic Clinics of North America, vol. 37, no. 6, pp. 1127–1142. PMID: 15563906. DOI: 10.1016/j.otc.2004.06.010 (In English)

Wu, Y., Xu, X., Chen, Z. et al. (2020) Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain, Behavior, and Immunity, vol. 87, pp. 18–22. PMID: 32240762. DOI: 10.1016%2Fj.bbi.2020.03.031 (In English)

Xydakis, M. S., Dehgani-Mobaraki, P., Holbrook, E. H. et al. (2020) Smell and taste dysfunction in patients with COVID-19. The Lancet Infectious Diseases, vol. 20, no. 9, pp. 1015–1016. PMID: 32304629. DOI: 10.1016/S1473-3099(20)30293-0 (In English)

Yan, C. H., Faraji, F., Prajapati, D. P. et al. (2020) Association of chemosensory dysfunction and COVID-19 in patients presenting with influenza-like symptoms. International Forum of Allergy & Rhinology, vol. 10, no. 7, pp. 806–813. PMID: 32279441. DOI: 10.1111/alr.22579 (In English)

Youngentob, S. L., Schwob, J. E., Saha, S. et. al. (2001) Functional consequences following infection of the olfactory system by intranasal infusion of the olfactory bulb line variant (OBLV) of mouse hepatitis strain JHM. Chemical Senses, vol. 26, no. 8, pp. 953–963. PMID: 11595672. DOI: 10.1093/chemse/26.8.953 (In English)

Published

2020-09-30

Issue

Section

Reviews