The involvement of neurons expressing gene factor of interpulse interval (fipi) in regulation of courtship behavior of Drosophila melanogaster males

Authors

DOI:

https://doi.org/10.33910/2687-1270-2020-1-4-365-378

Keywords:

Drosophila, sexual behavior, short-term memory, gamma neurons, courtship suppression, olfactory signals

Abstract

Previously, we described gene factor of interpulse interval (fipi, aka CG15630), whose decreased expression in the nervous system led to the changes in the parameters of a pulse song—a component of courtship in Drosophila males, in particular, to the reduction of the interpulse interval (Fedotov et al. 2014). In this study, we describe the structures of the nervous system, where the fipi gene is expressed. We also examine the role of this gene in courtship behavior, including its modification as a result of previous experience of a male courting a non-receptive fertilized female. It is known that such experience (learning) reduces the intensity of subsequent courtship of a male as regards other females. The expression of the GFP marker protein under control of the fipi gene promoter was detected in local interneurons of the antennal lobes, in Kenyon gamma-neurons, and in visual neurons of the optical lobes. The blocking of synaptic transmission from fipi-neurons reduced the efficiency of courtship suppression, and increased the excitability of these neurons, which resulted in a longer retention of the suppression effect. The knockdown of the fipi gene did not cause abnormalities in the courtship suppression, instead, it increased courtship intensity in males with no experience. The results show that fipi neurons are involved in the regulation of courtship behavior, and suggest that the expression of the fipi gene in gamma-neurons of mushroom bodies is involved in the formation of a short-term memory in this form of learning.

References

Aso, Y., Hattori, D., Yu, Y. et al. (2014) The neuronal architecture of the mushroom body provides a logic for associative learning. eLife, vol. 3, article e04577. DOI: 10.7554/eLife.04577 (In English)

Auer, T. O., Benton, R. (2016) Sexual circuitry in Drosophila. Current Opinion in Neurobiology, vol. 38, pp. 18–26. DOI: 10.1016/j.conb.2016.01.004 (In English)

Bonfanti, L., Theodosis, D. T. (2009) Polysialic acid and activity-dependent synapse remodeling. Cell Adhesion & Migration, vol. 3, no. 1, pp. 43–50. DOI: 10.4161/cam.3.1.7258 (In English)

Chintapalli, V. R., Wang, J., Dow, J. A. T. (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nature Genetics, vol. 39, no. 6, pp. 715–720. DOI: 10.1038/ng2049 (In English)

Chou, Y.-H., Spletter, M. L., Yaksi, E. et al. (2010) Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nature Neuroscience, vol. 13, no. 4, pp. 439–449. DOI: 10.1038/nn.2489 (In English)

Connolly, K. (1968) The social facilitation of preening behaviour in Drosophila melanogaster. Animal Behaviour, vol. 16, no. 2-3, pp. 385–391. DOI: 10.1016/0003-3472(68)90023-7 (In English)

Duffy, J. B. (2002) GAL4 system in Drosophila: A fly geneticist’s Swiss army knife. Genesis, vol. 34, no. 1-2, pp. 1–15. DOI: 10.1002/gene.10150 (In English)

Edgington, E. S. (1995) Randomization tests. 3rd ed., correct. and compl. New York: Marcel Dekker Publ., 409 p. (In English)

Efron, B., Tibshirani, R. J. (1993) An introduction to the bootstrap. New York: Chapman and Hall, 456 p. (In English)

Fedotov, S. A., Bragina, Ju. V., Besedina, N. G. et al. (2014) The effect of neurospecific knockdown of candidate genes for locomotor behavior and sound production in Drosophila melanogaster. Fly, vol. 8, no. 3, pp. 176–187. DOI: 10.4161/19336934.2014.983389 (In English)

Fedotov, S. A., Bragina, Ju. V., Besedina, N. G. et al. (2018) Gene CG15630 (fipi) is involved in regulation of the interpulse interval in Drosophila courtship song. Journal of Neurogenetics, vol. 32, no. 1, pp. 15–26. DOI: 10.1080/01677063.2017.1405000 (In English)

Ferveur, J.-F. (2005) Cuticular hydrocarbons: Their evolution and roles in Drosophila pheromonal communication. Behavior Genetics, vol. 35, no. 3, article 279. DOI: 10.1007/s10519-005-3220-5 (In English)

Firth, L. C., Baker, N. E. (2007) Spitz from the retina regulates genes transcribed in the second mitotic wave, peripodial epithelium, glia and plasmatocytes of the Drosophila eye imaginal disc. Developmental Biology, vol. 307, no. 2, pp. 521–538. DOI: 10.1016/j.ydbio.2007.04.037 (In English)

Fore, T. R., Ojwang, A. A., Warner, M. L. et al. (2011) Mapping and application of enhancer-trap flippase expression in larval and adult Drosophila CNS. Journal of Visualized Experiments, vol. 52, article e2649. DOI: 10.3791/2649 (In English)

Goncharova, A. A., Bragina, Yu. V., Fedotov, S. A., Kamyshev, N. G. (2016) Vliyanie gruppovogo soderzhaniya na polovoe povedenie samtsov Drosophila melanogaster [Influence of group rearing on sexual behavior of Drosophila melanogaster males]. Zhurnal evolyutsionnoj biokhimii i fiziologii — Journal of Evolutionary Biochemistry and Physiology, vol. 52, no. 6, pp. 454–462. (In Russian)

Griffith, L. C., Ejima, A. (2009) Courtship learning in Drosophila melanogaster: Diverse plasticity of a reproductive behavior. Learning & Memory, vol. 16, no. 12, pp. 743–750. DOI: 10.1101/lm.956309 (In English)

Kamyshev, N. G., Iliadi, K. G., Bragina, J. V. (1999) Drosophila conditioned courtship: Two ways of testing memory. Learning & Memory, vol. 6, no. 1, pp. 1–20. (In English)

Karim, M. R., Endo, K., Moore, A. W., Taniguchi, H. (2014) Whole mount immunolabeling of olfactory receptor neurons in the Drosophila antenna. Journal of Visualized Experiments, vol. 87, article e51245. DOI: 10.3791/51245 (In English)

Keene, A. C., Waddell, S. (2007) Drosophila olfactory memory: Single genes to complex neural circuits. Nature Reviews Neuroscience, vol. 8, no. 5, pp. 341–354. DOI: 10.1038/nrn2098 (In English)

Keleman, K., Vrontou, E., Krüttner, S. et al. (2012) Dopamine neurons modulate pheromone responses in Drosophila courtship learning. Nature, vol. 489, no. 7414, pp. 145–149. DOI: 10.1038/nature11345 (In English)

Khanna, M. R., Stanley, B. A., Thomas, G. H. (2010) Towards a membrane proteome in Drosophila: A method for the isolation of plasma membrane. BMC Genomics, vol. 11, article 302. DOI: 10.1186/1471-2164-11-302 (In English)

Kurusu, M., Awasaki, T., Masuda-Nakagawa, L. M. et al. (2002) Embryonic and larval development of the Drosophila mushroom bodies: Concentric layer subdivisions and the role of fasciclin II. Development, vol. 129, no. 2, pp. 409–419. (In English)

Martin, J.-R., Keller, A., Sweeney, S. T. (2002) 1-targeted expression of tetanus toxin: A new tool to study the neurobiology of behavior. Advances in Genetics, vol. 47, pp. 1–47. DOI: 10.1016/s0065-2660(02)47001-0 (In English)

Muller, D., Wang, C., Skibo, G. et al. (1996) PSA-NCAM is required for activity-induced synaptic plasticity. Neuron, vol. 17, no. 3, pp. 413–422. DOI: 10.1016/s0896-6273(00)80174-9 (In English)

Nitabach, M. N., Wu, Y., Sheeba, V. et al. (2006) Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and induces multiple behavioral periods. The Journal of Neuroscience, vol. 26, no. 2, pp. 479–489. DOI: 10.1523/JNEUROSCI.3915-05.2006 (In English)

Özkan, E., Carrillo, R. A., Eastman, C. L. et al. (2013) An extracellular interactome of immunoglobulin and LRR proteins reveals receptor-ligand networks. Cell, vol. 154, no. 1, pp. 228–239. DOI: 10.1016/j.cell.2013.06.006 (In English)

Pfaffl, M. W., Horgan, G. W., Dempfle, L. (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, vol. 30, no. 9, article 36. DOI: 10.1093/nar/30.9.e36 (In English)

Pfeiffer, B. D., Jenett, A., Hammonds, A. S. et al. (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 28, pp. 9715–9720. DOI: 10.1073/pnas.0803697105 (In English)

Siegel, R. W., Hall, J. C. (1979) Conditioned responses in courtship behavior of normal and mutant Drosophila. Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 7, pp. 3430–3434. DOI: 10.1073/pnas.76.7.3430 (In English)

Spieth, H. T. (1974) Courtship behavior in Drosophila. Annual Review of Entomology, vol. 19, pp. 385–405. DOI: 10.1146/annurev.en.19.010174.002125 (In English)

Tompkins, L. (1984) Genetic analysis of sex appeal in Drosophila. Behavior Genetics, vol. 14, no. 5, pp. 411–440. DOI: 10.1007/BF01065443 (In English)

Trannoy, S., Redt-Clouet, C., Dura, J.-M., Preat, T. (2011) Parallel processing of appetitive short- and long-term memories in Drosophila. Current Biology, vol. 21, no. 19, pp. 1647–1653. DOI: 10.1016/j.cub.2011.08.032 (In English)

Vogt, K., Schnaitmann, C., Dylla, K. V. et al. (2014) Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. eLife, vol. 3, article e02395. DOI: 10.7554/eLife.02395 (In English)

Weidmann, U. (1950) Untersuchungen zur Ethologie von Drosophila. Die Balz-und Putzhandlungen [Studies of the Drosophila ethology. Courtship and preening]. PhD dissertation (Biology) (as a manuscript). Zurich, Zurich University, 391 p. (In German)

Yamamoto, D., Sato, K., Koganezawa, M. (2014) Neuroethology of male courtship in Drosophila: From the gene to behavior. Journal of Comparative Physiology A, vol. 200, no. 4, pp. 251–264. DOI: 10.1007/s00359-014-0891-5 (In English)

Zhang, S. X., Rogulja, D., Crickmore, M. A. (2019) Recurrent circuitry sustains Drosophila courtship drive while priming itself for satiety. Current Biology, vol. 29, no. 19, pp. 3216–3228.e9. DOI: 10.1016/j.cub.2019.08.015 (In English)

Zhao, X., Lenek, D., Dag, U. et al. (2018) Persistent activity in a recurrent circuit underlies courtship memory in Drosophila. eLife, vol. 7, article e31425. DOI: 10.7554/eLife.31425 (In English)

Published

2020-12-28

Issue

Section

Experimental articles