Pharmacological preconditioning

Authors

DOI:

https://doi.org/10.33910/2687-1270-2020-1-1-32-39

Keywords:

pharmacological preconditioning, neuroprotection, cardioprotection, translational medicine

Abstract

Preconditioning is the use of preventive actions to increase the resistance of individual organs or the body as a whole to damaging factors. There are two main approaches for preconditioning — non-drug, based on the use of physical factors of moderate intensity (hypoxia/ischemia, cold stress or heat-shock, etc.) and drug, called “pharmacological preconditioning”. As the name implies, pharmacological preconditioning is carried out through the preventive use of various pharmacological agents and is now considered as a promising approach to ensure cardio-and neuroprotection. In particular, pre-pharmacological preparation may be convenient for surgical clinical scenarios. Many pharmacological agents offered for preconditioning have already been clinical use for many years, however, for purposes other than preconditioning, e.g. inhalation anesthetics, antibiotics, and opioids. Other groups of substances considered for pharmacological preconditioning are agents of bacterial and endogenous origin: steroid hormones, lipopolysaccharide, deferoxamine, erythromycin, thrombin, and erythropoietin. From a translational point of view, safety profiles of many of these substances are well studied and tested which could facilitate their rapid clinical implementation and application. However, despite the fact that many types of pharmacological preconditioning have proven to be effective and have significant potential in animal model studies, most of them have not yet been studied in a clinical setting. Thus, considering high translational potential of pharmacological preconditioning technologies and marked insufficiency of clinical studies in this area the implementation of these technologies in the clinic can become a breakthrough in preventive medicine. The purpose of this review is to draw the attention of a wide range of researchers and clinicians to this issue in the hope that it will encourage the professional community to actively engage in search for a solution.

References

Ahmed, S. H., He, Y. Y., Nassief, A. et al. (2000) Effects of lipopolysaccharide priming on acute ischemic injury. Stroke, vol. 31, no. 1, pp. 193–199. PMID: 10625737. DOI: 10.1161/01.str.31.1.193 (In English)

Allain, R., Marone, L. K., Meltzer, J. et al. (2005) Carotid endarterectomy. International Anesthesiology Clinics, vol. 43, no. 1, pp. 15–38. PMID: 15632515. DOI: 10.1097/01.aia.0000150279.00355.6c (In English)

Arrowsmith, J. E., Grocott, H. P., Reves, J. G. et al. (2000) Central nervous system complications of cardiac surgery. British Journal of Anaesthesia, vol. 84, no. 3, pp. 378–393. DOI: 10.1093/oxfordjournals.bja.a013444 (In English)

Bantel, C., Maze, M., Trapp, S. (2009) Neuronal preconditioning by inhalational anesthetics: evidence for the role of plasmalemmal adenosine triphosphate-sensitive potassium channels. Anesthesiology, vol. 110, no. 5, pp. 986–995. DOI: 10.1097/ALN.0b013e31819dadc7 (In English)

Brambrink, A. M., Koerner, I. P., Diehl, K. et al. (2006) The antibiotic erythromycin induces tolerance against transient global cerebral ischemia in rats (pharmacologic preconditioning). Anesthesiology, vol. 104, no. 6, pp. 1208–1215. PMID: 16732092. DOI: 10.1097/00000542-200606000-00016 (In English)

Centonze, D., Bari, M., Rossi, S. et al. (2007) The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain, vol. 130, pt. 10, pp. 2543–2553. PMID: 17626034. DOI: 10.1093/brain/awm160 (In English)

Chen, B., Cheng, Q., Yang, K. et al. (2010) Thrombin mediates severe neurovascular injury during ischemia. Stroke, vol. 41, no. 10, pp. 2348–2352. PMID: 20705928. DOI: 10.1161/STROKEAHA.110.584920 (In English)

Chi, O. Z., Hunter, C., Chokshi, S. K. et al. (2010) Effects of fentanyl pretreatment on regional cerebral blood flow in cerebral ischemia in rats. Pharmacology, vol. 85, no. 3, pp. 153–157. PMID: 20150753. DOI: 10.1159/000269811 (In English)

Clergue, F., Auroy, Y., Péquignot, F. et al. (1999) French survey of anesthesia in 1996. Anesthesiology, vol. 91, no. 5, pp. 1509–1520. (In English) Coughlin, S. R. (2000) Thrombin signalling and protease-activated receptors. Nature, vol. 407, no. 6801, pp. 258–264. PMID: 10551604. DOI: 10.1097/00000542-199911000-00045 (In English)

Davies, B., Cohen, J. (2011) Endotoxin removal devices for the treatment of sepsis and septic shock. Lancet Infectious Diseases, vol. 11, no. 1, pp. 65–71. PMID: 21183148. DOI: 10.1016/S1473-3099(10)70220-6 (In English)

Dawson, T. M. (2001) Preconditioning-mediated neuroprotection through erythropoietin? Lancet, vol. 359, no. 9301, pp. 96–97. PMID: 11809248. DOI: 10.1016/S0140-6736(02)07335-X (In English)

Ehrenreich, H., Hasselblatt, M., Dembowski, C. et al. (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Molecular Medicine, vol. 8, no. 8, pp. 495–505. PMID: 12435860. (In English)

Ehrenreich, H., Weissenborn, K., Prange, H. et al. (2009) Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke, vol. 40, no. 12, pp. 647–656. DOI: 10.1161/strokeaha.109.564872 (In English)

Eid, T., Brines, M. (2002) Recombinant human erythropoietin for neuroprotection: What is the evidence? Clinical Breast Cancer, vol. 3, suppl. 3, pp. S109–S115. PMID: 12533271. (In English)

Furuya, K., Zhu, L., Kawahara, N. et al. (2005) Differences in infarct evolution between lipopolysaccharide-induced tolerant and nontolerant conditions to focal cerebral ischemia. Journal of Neurosurgery, vol. 103, no. 4, pp. 715–723. DOI: 10.3171/jns.2005.103.4.0715 (In English)

Gilbert, G. L., Kim, H. J., Waataja, J. J., Thayer, S. A. (2007) Delta9-tetrahydrocannabinol protects hippocampal neurons from excitotoxicity. Brain Research, vol. 1128, no. 1, pp. 61–69. PMID: 17140550. DOI: 10.1016/j.brainres.2006.03.011 (In English)

Golech, S. A., McCarron, R. M., Chen, Y. et al. (2004) Human brain endothelium: Coexpression and function of vanilloid and endocannabinoid receptors. Molecular Brain Research, vol. 132, no. 1, pp. 87–92. PMID: 15548432. DOI: 10.1016/j.molbrainres.2004.08.025 (In English)

Gwaks, M. S., Li, L., Zuo, Z. (2010) Morphine preconditioning reduces lipopolysaccharide and interferon-gammainduced mouse microglial сell injury via delta 1 opioid receptor activation. Neuroscience, vol. 167, no. 2, pp. 256–260. PMID: 20156527. DOI: 10.1016/j.neuroscience.2010.02.017 (In English)

Hall, E. D. (1992) The neuroprotective pharmacology of methylprednisolone. Journal of Neurosurgery, vol. 76, no. 1, pp. 13–22. (In English)

Halliwell, B. (1989) Protection against tissue damage in vivo by desferrioxamine: what is its mechanism of action? Free Radical Biology and Medicine, vol. 7, no. 6, pp. 645–651. PMID: 2695408. DOI: 10.1016/0891-5849(89)90145-7 (In English)

Hamill, C. E., Mannaioni, G., Lyuboslavsky, P. et al. (2009) Protease-activated receptor 1-dependent neuronal damage involves NMDA receptor function. Experimental Neurology, vol. 217, no. 1, pp. 136–146. PMID: 19416668. DOI: 10.1016/j.expneurol.2009.01.023 (In English)

Hasselblatt, M., Ehrenreich, H., Siren, A. L. (2006) The brain erythropoietin system and its potential for therapeutic exploitation in brain disease. Journal of Neurosurgical Anesthesiology, vol. 18, no. 2, pp. 132–138. PMID: 16628067. (In English)

Hua, Y., Nakamura, T., Keep, R F. et al. (2006) Long-term effects of experimental intracerebral hemorrhage: the role of iron. Journal of Neurosurgery, vol. 104, no. 2, pp. 305–312. PMID: 16509506. DOI: 10.3171/jns.2006.104.2.305 (In English)

Jiang, Y., Wu, J., Hua, Y. et al. (2002) Thrombin-receptor activation and thrombin-induced brain tolerance. Journal of Cerebral Blood Flow & Metabolism, vol. 22, no. 4, pp. 404–410. PMID: 11919511. DOI: 10.1097/00004647-200204000-00004 (In English)

Keberle, H. (1964) The biochemistry of desferrioxamine and its relation to iron metabolism. Annals of the New York Academy of Sciences, vol. 119, pp. 758–768. PMID: 14219455. DOI: 10.1111/j.1749-6632.1965.tb54077.x (In English)

Kitano, H., Kirsch, J. R., Hurn, P. D. et al. (2007) Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. Journal of Cerebral Blood Flow & Metabolism, vol. 27, no. 6, pp. 1108–1128. PMID: 17047683. DOI: 10.1038/sj.jcbfm.9600410 (In English)

Koch, M., Kreutz, S., Bottger, C. et al. (2011) The cannabinoid WIN 55,212–2-mediated protection of dentate gyrus granule cells is driven by CB1 receptors and modulated by TRPA1 and Cav2.2 channels. Hippocampus, vol. 21, no. 5, pp. 554–564. DOI: 10.1002/hipo.20772 (In English)

Koerner, I. P., Gatting, M., Noppens, R. et al. (2007) Induction of cerebral ischemic tolerance by erythromycin preconditioning reprograms the transcriptional response to ischemia and suppresses inflammation. Anesthesiology, vol. 106, no. 3, pp. 538–547. PMID: 17325513. DOI: 10.1097/00000542-200703000-00019 (In English)

Kumral, A., Gonenc, S., Acikgoz, O. et al. (2005) Erythropoietin increases glutathione peroxidase enzyme activity and decreases lipid peroxidation levels in hypoxic-ischemic brain injury in neonatal rats. Biology of the Neonate, vol. 87, no. 1, pp. 15–18. PMID: 15334031. DOI: 10.1159/000080490 (In English)

Lehmann, K. A. (1997) Opioids: Overview on action, interaction and toxicity. Supportive Care in Cancer, vol. 5, no. 6, pp. 439–444. DOI: 10.1007/s005200050111 (In English)

Leker, R. R., Shohami, E. (2002) Cerebral ischemia and trauma-different etiologies yet similar mechanisms: Neuroprotective opportunities. Brain Research Reviews, vol. 39, no. 1, pp. 55–73. PMID: 12086708. (In English)

Li, J., Zheng, S., Zuo, Z. (2002) Isoflurane decreases AMPA-induced dark cell degeneration and edematous damage of Purkinje neurons in the rat cerebellar slices. Brain Research, vol. 958, no. 2, pp. 399–404. PMID: 12470876. DOI: 10.1016/S0006-8993(02)03700-9 (In English)

Lim, Y. J., Zhen, S., Zuo, Z. (2004) Morphine preconditions Purkinje cells against cell death under in vitro simulated ischemia-reperfusion conditions. Anesthesiology, vol. 100, no. 3, pp. 562–568. PMID: 15108969. DOI: 10.1097/00000542-200403000-00015 (In English)

Luo, Y., Ma, D., Ieong, E. et al. (2008) Xenon and sevoflurane protect against brain injury in a neonatal asphyxia model. Anesthesiology, vol. 109, no. 5, pp. 782–789. PMID: 18946288. DOI: 10.1097/ALN.0b013e3181895f88 (In English)

Mallard, C., Hagberg, H. (2007) Inflammation-induced preconditioning in the immature brain. Seminars in Fetal and Neonatal Medicine, vol. 12, no. 4, pp. 280–286. PMID: 17327146. DOI: 10.1016/j.siny.2007.01.014 (In English)

Marti, H. H., Wenger, R. H., Rivas, L. A. et al. (1996) Erythropoietin gene expression in human, monkey and murine brain. European Journal of Neuroscience, vol. 8, no. 4, pp. 666–676. PMID: 9081618. DOI: 10.1111/j.1460-9568.1996.tb01252.x (In English)

Masada, T., Xi, G., Hua, Y., Keep, R. F. (2000) The effects of thrombin preconditioning on focal cerebral ischemia in rats. Brain Research, vol. 867, no. 1–2, pp. 173–179. DOI: 10.1016/S0006-8993(00)02302-7 (In English)

McKendrick, M. W. (1979) Erythromycin revisited. Journal of Antimicrobial Chemotherapy, vol. 5, no. 5, pp. 495–497. PMID: 387701. DOI: 10.1093/jac/5.5.495 (In English)

Nagayama, T., Sinor, A. D., Simon, R. P. et al. (1999) Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. Journal of Neuroscience, vol. 19, no. 8, pp. 2987–2995. PMID: 10191316. (In English)

Nakamura, T., Keep, R. F., Hua, Y. G. et al. (2003) Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. Neurosurgical Focus, vol. 15, no. 4, article ECP4. PMID: 15344903. DOI: 10.3171/jns.2004.100.4.0672 (In English)

Nishino, A., Suzuki, M., Motohashi, O. et al. (1993) Thrombin may contribute to the pathophysiology of central nervous system injury. Journal of Neurotrauma, vol. 10, no. 2, pp. 167–179. PMID: 7692071. DOI: 10.1089/neu.1993.10.167 (In English)

Ozaita, A., Puighermanal, E., Maldonado, R. (2007) Regulation of PI3K/Akt/GSK-3 pathway by cannabinoids in the brain. Journal of Neurochemistry, vol. 102, no. 4, pp. 1105–1114. DOI: 10.1111/j.1471-4159.2007.04642.x (In English)

Pacher, P., Hasko, G. (2008) Endocannabinoids and cannabinoid receptors in ischaemia reperfusion injury and preconditioning. British Journal of Pharmacology, vol. 153, no. 2, pp. 252–262. PMID: 18026124. DOI: 10.1038/sj.bjp.0707582 (In English)

Palmer, C., Roberts, R. L., Bero, C. (1994) Deferoxamine posttreatment reduces ischemic train injury in neonatal rats. Stroke, vol. 25, no. 5, pp. 1039–1045. PMID: 8165675. DOI: 10.1161/01.str.25.5.1039 (In English)

Park, H. P., Jeon, Y. T., Hwang, J. W. et al. (2005) Isoflurane preconditioning protects motor neurons from spinal cord ischemia: Its dose-response effects and activation of mitochondrial adenosine triphosphate-dependent potassium channel. Neuroscience Letters, vol. 387, no. 2, pp. 90–94. DOI: 10.1016/j.neulet.2005.06.072 (In English)

Peng, P. H., Huang, H. S., Lee, Y. J. et al. (2009) Novel role for the delta-opioid receptor in hypoxic preconditioning in rat retinas. Journal of Neurochemistry, vol. 108, no. 3, pp. 741–754. PMID: 19054276. DOI: 10.1111/j.1471-4159.2008.05807.x (In English)

Prass, K., Scharff, A., Ruscher, K. et al. (2003) Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke, vol. 34, no. 8, pp. 1981–1986. PMID: 12829864. DOI: 10.1161/01.STR.0000080381.76409.B2 (In English)

Riek-Burchardt, M., Striggow, F., Henrich-Noack, P. et al. (2002) Increase of prothrombin-mRNA after global cerebral ischemia in rats, with constant expression of protease nexin-1 and protease-activated receptors. Neuroscience Letters, vol. 329, no. 2, pp. 181–184. PMID: 12165407. DOI: 10.1016/S0304-3940(02)00645-6 (In English)

Roof, R. L., Hall, E. D. (2000) Gender differences in acute CNS trauma and stroke: Neuroprotective effects of estrogen and progesterone. Journal of Neurotrauma, vol. 17, no. 5, pp. 367–388. PMID: 10833057. DOI: 10.1089/neu.2000.17.367 (In English)

Sang, H., Cao, L., Qiu, P. et al. (2006) Isoflurane produces delayed preconditioning against spinal cord ischemic injury via release of free radicals in rabbits. Anesthesiology, vol. 105, no. 5, pp. 953–960. PMID: 17065889. DOI: 10.1097/00000542-200611000-00016 (In English)

Selim, M. (2009) Deferoxamine mesylate: A new hope for intracerebral hemorrhage: from bench to clinical trials. Stroke, vol. 40, suppl. 3, pp. s90–s91. PMID: 19064798. DOI: 10.1161/STROKEAHA.108.533125 (In English)

Semenza, G. L. (2000) HIF-1: Mediator of physiological and pathophysiological responses to hypoxia. Journal of Applied Physiology, vol. 88, no. 4, pp. 1474–1480. PMID: 10749844. DOI: 10.1152/jappl.2000.88.4.1474 (In English)

Siddiq, A., Aminova, L. R., Ratan, R. R. (2008) Prolyl 4-hydroxylase activity-responsive transcription factors: From hydroxylation to gene expression and neuroprotection. Frontiers in Bioscience, vol. 13, pp. 2875–2887. PMID: 17981760. DOI: 10.2741/2892 (In English)

Stella, N. (2010) Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia, vol. 58, no. 9, pp. 1017–1030. PMID: 20468046. DOI: 10.1002/glia.20983 (In English)

Stetler, R. A., Gao, Y., Signore, A. P. et al. (2009) HSP27: Mechanisms of cellular protection against neuronal injury. Current Molecular Medicine, vol. 9, no. 7, pp. 863–872. PMID: 19860665. DOI: 10.2174/156652409789105561 (In English)

Straughan, J. L. (1978) Another look at erythromycin. South African Medical Journal, vol. 54, no. 14, pp. 527–530. PMID: 354037. (In English)

Tuttolomondo, A., Di Raimondo, D., di Sciacca, R. et al. (2008) Inflammatory cytokines in acute ischemic stroke. Current Pharmaceutical Design, vol. 14, no. 33, pp. 3574–3589. DOI: 10.2174/138161208786848739 (In English)

Villa P., Bigini P., Mennini T. et al. (2003) Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. Journal of Experimental Medicine, vol. 198, no. 6, pp. 971–975. PMID: 12975460. DOI: 10.1084/jem.20021067 (In English)

Weber, N. C., Toma, O., Awan, S. et al. (2005) Effects of nitrous oxide on the rat heart in vivo: Another inhalational anesthetic that preconditions the heart? Anesthesiology, vol. 103, no. 6, pp. 1174–1182. PMID: 16306729. DOI: 10.1097/00000542-200512000-00011 (In English)

Xi, G., Hua, Y., Keep, R. F. et al. (2000) Induction of colligin may attenuate brain edema following intracerebral hemorrhage. In: A. D. Mendelow, A. Baethmann, Z. Czernicki et al. (eds.). Brain Edema XI. Acta Neurochirurgica Supplements. Vol. 76. Vienna: Springer, pp. 501–505. (In English)

Xi, G., Keep, R F., Hua, Y. et al. (1999) Attenuation of thrombin-induced brain edema by cerebral thrombin preconditioning. Stroke, vol. 30, no. 6, pp. 1247–1255. PMID: 10356108. DOI: 10.1161/01.str.30.6.1247 (In English)

Zhang, J., Qian, H., Zhao, P. et al. (2006) Rapid hypoxia preconditioning protects cortical neurons from glutamate toxicity through delta-opioid receptor. Stroke, vol. 37, no. 4, pp. 1094–1099. PMID: 16514101. DOI: 10.1161/01.STR.0000206444.29930.18 (In English)

Zhao, P., Huang, Y., Zuo, Z. (2006) Opioid preconditioning induces opioid receptor-dependent delayed neuroprotection against ischemia in rats. Journal of Neuropathology & Experimental Neurology, vol. 65, no. 10, pp. 945–952. PMID: 17021399. DOI: 10.1097/01.jnen.0000235123.05677.4b (In English)

Zheng, S., Zuo, Z. (2003) Isoflurane preconditioning reduces Purkinje cell death in an in vitro model of rat cerebellar ischemia. Neuroscience, vol. 118, no. 1, pp. 99–106. PMID: 12676141. DOI: 10.1016/s0306-4522(02)00767-4 (In English)

Published

2020-03-02

Issue

Section

Reviews