Гипотетический нейронный механизм слепоты невнимания
DOI:
https://doi.org/10.33910/2687-1270-2022-3-1-23-40Ключевые слова:
произвольное внимание, синаптическая пластичность, дофамин, неокортекс, таламус, базальные ганглии, гиппокамп, мозжечокАннотация
Одним из подходов к изучению сознания является исследование особенностей слепоты невнимания. Поскольку этот эффект возникает в отсутствие произвольного внимания, изучение механизмов последнего представляет значительный интерес. Нами предположено, что включение произвольного внимания в обработку сенсорной информации требует активации префронтальной коры и гиппокампа, а также выделения дофамина во входной структуре базальных ганглиев — стриатуме. Это способствует растормаживанию нейронов таламуса, а также субталамического и педункулопонтийного ядер, находящихся под тормозным влиянием со стороны базальных ганглиев. Если нейроны вентрального стриатума, на которых конвергируют входы из префронтальной и ретросплениальной областей коры, а также гиппокампа, активируются достаточно сильно, дофаминзависимая реорганизация активности в цепях «кора — базальные ганглии — таламус — кора» способствует формированию нейронных отображений сенсорных стимулов в соответствующих областях коры. Кроме того, облегчаются условия для циркуляции возбуждения в топографически организованных таламо-кортикальных цепях, в цепях, связывающих первичные и высшие области коры через таламические ядра высокого порядка, а также в цепях, связывающих кору и таламус с гиппокампом, мозжечком, субталамическим и педункулопонтийным ядрами. Принято считать, что повторное возбуждение высших областей коры лежит в основе осознанного восприятия. Тогда время, необходимое для осознания сенсорного стимула, должно зависеть от времени циркуляции активности в указанных цепях. Из предлагаемого механизма следует, что вызванное дефицитом дофамина усиление ингибирования таламуса, а также ослабление его возбуждения со стороны коры, мозжечка, субталамического и педункулопонтийного ядер должно приводить к увеличению интервала между двумя стимулами, необходимого для осознания второго. Это следствие согласуется с известными результатами исследований слепоты невнимания, показавшими, что этот интервал действительно увеличивается при болезни Паркинсона, а также при повреждении мозжечка или педункулопонтийного ядра.
Библиографические ссылки
ЛИТЕРАТУРА
Анохин, К. В. (2021) Когнитом: в поисках фундаментальной нейронаучной теории сознания. Журнал высшей нервной деятельности имени И. П. Павлова, т. 71, № 1, с. 39–71. https://doi.org/10.31857/S0044467721010032
Вебер, Н. В., Рапопорт, С. Ш., Силькис, И. Г. и др. (1988) Длительные посттетанические изменения импульсных реакций нейронов зрительной коры кошек. Журнал высшей нервной деятельности имени И. П. Павлова, т. 38, № 5, с. 963–965. PMID: 3223081.
Сергин, В. Я. (2020) Автоотождествление и сенсорно-моторное повторение как физиологические механизмы сознания. Журнал высшей нервной деятельности имени И. П. Павлова, т. 70, № 5, с. 696–720. https://doi.org/10.31857/S004446772005010X
Силькис, И. Г. (1995) Длительные изменения эффективности возбудительной синаптической передачи в таламо-кортикальных сетях, вызванные микростимуляцией неокортекса. Журнал высшей нервной деятельности имени И. П. Павлова, т. 45, № 2, с. 321–334. PMID: 7597829.
Силькис, И. Г. (2002) Унифицированный постсинаптический механизм влияния различных нейромодуляторов на модификацию возбудительных и тормозных входов к нейронам гиппокампа (Гипотеза). Успехи физиологических наук, т. 33, № 1, с. 40–57. PMID: 11881334
Силькис, И. Г. (2006) Вклад синаптической пластичности в базальных ганглиях в обработку зрительной информации (гипотетический механизм). Журнал высшей нервной деятельности имени И. П. Павлова, т. 56, № 6, с. 742–756.
Силькис, И. Г. (2007) Роль дофамин-зависимых перестроек активности в цепях кора — базальные ганглии — таламус — кора в зрительном внимании (гипотетический механизм). Успехи физиологических наук, т 38, № 4, с. 21–38. PMID: 18064906
Силькис, И. Г. (2011) Преимущества иерархического обобщения и хранения отображений ассоциаций «объект — место» в полях гиппокампа (гипотеза). Журнал высшей нервной деятельности имени И. П. Павлова, т. 61, № 1, с. 5–23.
Силькис, И. Г. (2014) Механизмы взаимозависимого влияния префронтальной коры, гиппокампа и миндалины на функционирование базальных ганглиев и выбор поведения. Журнал высшей нервной деятельности имени И. П. Павлова, т. 64, № 1, с. 82–100. https://doi.org/10.7868/S0044467714010110
Силькис, И. Г. (2015) О роли базальных ганглиев в обработке сложных звуковых стимулов и слуховом внимании. Успехи физиологических наук, т. 46, № 3, с. 76–92.
Силькис, И. Г. (2021а) Влияние дофамина на взаимозависимое функционирование мозжечка, базальных ганглиев и новой коры (гипотетический механизм). Успехи физиологических наук, т. 52, № 1, с. 49–63. https://doi.org/10.31857/S0301179821010094
Силькис, И. Г. (2021b) Возможные механизмы взаимозависимого участия базальных ганглиев и мозжечка в функционировании двигательных и сенсорных систем. Интегративная физиология, т. 2, № 2, с. 135–146. https://doi.org/10.33910/2687-1270-2021-2-2-135-146
Силькис, И. Г. (2021c) Участие ядер гипоталамуса в формировании ассоциаций «объект — место» на нейронах поля СА2 гиппокампа (гипотетический механизм). Журнал высшей нервной деятельности имени И. П. Павлова, т. 71, № 2, с. 147–163. https://doi.org/10.31857/S0044467721020106
Силькис, И. Г. (2022) Механизмы функционирования коннектома, включающего неокортекс, гиппокамп, базальные ганглии, мозжечок и таламус. Журнал высшей нервной деятельности имени И. П. Павлова, т. 72, № 1, с. 36–54. https://doi.org/10.31857/S0044467722010105
Asplund, C. L., Fougnie, D., Zughni, S. et al. (2014) The attentional blink reveals the probabilistic nature of discrete conscious perception. Psychological Science, vol. 25, no. 3, pp. 824–831. https://doi.org/10.1177/0956797613513810
Baars, B. J. (2005) Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Progress in Brain Research, vol. 150, pp. 45–53. https://doi.org/10.1016/S0079-6123(05)50004-9
Birrell, J. M., Brown, V. J. (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. Journal of Neuroscience, vol. 20, no. 11, pp. 4320–4324. https://doi.org/10.1523/JNEUROSCI.20-11-04320.2000
Bočková, M., Chládek, J., Jurák, P. et al. (2011) Involvement of the subthalamic nucleus and globus pallidus internus in attention. Journal of Neural Transmission, vol. 118, no. 8, pp. 1235–1245. https://doi.org/10.1007/s00702-010-0575-4
Cassel, J. C., Ferraris, M., Quilichini, P. et al. (2021) The reuniens and rhomboid nuclei of the thalamus: A crossroads for cognition-relevant information processing? Neuroscience & Biobehavioral Reviews, vol. 126, pp. 338–360. https://doi.org/10.1016/j.neubiorev.2021.03.023
Chang, D. I., Lissek, S., Ernst, T. M. et al. (2015) Cerebellar contribution to context processing in extinction learning and recall. Cerebellum, vol. 14, no. 6, pp. 670–676. https://doi.org/10.1007/s12311-015-0670-z
Chudasama, Y., Robbins, T. W. (2004) Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacology, vol. 29, no. 9, pp. 1628–1636. https://doi.org/10.1038/sj.npp.1300490
Ciaramelli, E., Grady, C. L., Moscovitch, M. (2008) Top-down and bottom-up attention to memory: a hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia, vol. 46, no. 7, pp. 1828–1851. https://doi.org/10.1016/j.neuropsychologia.2008.03.022
Colzato, L. S., Slagter, H. A., Spapé, M. M. et al. (2008) Blinks of the eye predict blinks of the mind. Neuropsychologia, vol. 46, no. 13, pp. 3179–3183. https://doi.org/10.1016/j.neuropsychologia.2008.07.006
Connell, L., Lynott, D. (2016) Do we know what we’re simulating? Information loss on transferring unconscious perceptual simulation to conscious imagery. The Journal of Experimental Psychology: Learning, Memory and Cognition, vol. 42, no. 8, pp. 1218–1232. https://doi.org/10.1037/xlm0000245
Edelman, G. M., Gally, J. A., Baars, B. J. (2011) Biology of consciousness. Frontiers in Psychology, vol. 25, no. 2, article 4. https://doi.org/10.3389/fpsyg.2011.00004
Ekstrom, A. D., Yonelinas, A. P. (2020) Precision, binding, and the hippocampus: Precisely what are we talking about? Neuropsychologia, vol. 138, article 107341. https://doi.org/10.1016/j.neuropsychologia.2020.107341
Finch, D. M. (1996) Neurophysiology of converging synaptic inputs from the rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens. Hippocampus, vol. 6, no. 5, pp. 495–512. https://doi.org/10.1002/(SICI)1098-1063(1996)6:5<495::AID-HIPO3>3.0.CO;2-I
Fischer, J., Schwiecker, K., Bittner, V. et al. (2015) Modulation of attentional processing by deep brain stimulation of the pedunculopontine nucleus region in patients with parkinsonian disorders. Neuropsychology, vol. 29, no. 4, pp. 632–637. https://doi.org/10.1037/neu0000179
Goldfarb, E. V., Chun, M. M., Phelps, E. A. (2016) Memory-guided attention: Independent contributions of the hippocampus and striatum. Neuron, vol. 89, no. 2, pp. 317–324. https://doi.org/10.1016/j.neuron.2015.12.014
Günseli, E., Aly, M. (2020) Preparation for upcoming attentional states in the hippocampus and medial prefrontal cortex. Elife, vol. 9, article e53191. https://doi.org/10.7554/eLife.53191
Gut, N. K., Winn, P. (2016) The pedunculopontine tegmental nucleus-A functional hypothesis from the comparative literature. Movement Disorders, vol. 31, no. 5, pp. 615–624. https://doi.org/10.1002/mds.26556
Halassa, M. M., Kastner, S. (2017) Thalamic functions in distributed cognitive control. Nature Neuroscience, vol. 20, no. 12, pp. 1669–1679. https://doi.org/10.1038/s41593-017-0020-1
Hutchinson, B. T. (2019) Toward a theory of consciousness: A review of the neural correlates of inattentional blindness. Neuroscience & Biobehavioral Reviews, vol. 104, pp. 87–99. https://doi.org/10.1016/j.neubiorev.2019.06.003
Hirsch, J. A., Chan, J. C., Yin, T. C. (1985) Responses of neurons in the cat’s superior colliculus to acoustic stimuli. I. Monaural and binaural response properties. Journal of Neurophysiology, vol. 53, no. 3, pp. 726–745. https://doi.org/10.1152/jn.1985.53.3.726
Hoover, W. B., Vertes, R. P. (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Structure and Function, vol. 212, no. 2, pp. 149–179. https://doi.org/10.1007/s00429-007-0150-4
Hsu, S. M., George, N., Wyart, V. et al. (2011) Voluntary and involuntary spatial attentions interact differently with awareness. Neuropsychologia, vol. 49, no. 9, pp. 2465–2474. https://doi.org/10.1016/j.neuropsychologia.2011.04.024
Huettel, S. A., Güzeldere, G., McCarthy, G. (2001) Dissociating the neural mechanisms of visual attention in change detection using functional MRI. Journal of Cognitive Neuroscience, vol. 13, no. 7, pp. 1006–1018. https://doi.org/10.1162/089892901753165908
Inglis, W. L, Olmstead, M. C., Robbins, T. W. (2001) Selective deficits in attentional performance on the 5-choice serial reaction time task following pedunculopontine tegmental nucleus lesions. Behavioral Brain Research, vol. 123, no. 2, pp. 117–131. https://doi.org/10.1016/s0166-4328(01)00181-4
Jiang, Y., Tian, Y., Wang, K. (2013) The change of attentional blink and repetition blindness after cerebellar lesions. Journal of Clinical Neuroscience, vol. 20, no. 12, pp. 1742–1746. https://doi.org/10.1016/j.jocn.2013.01.022
Kanai, R., Tsuchiya, N., Verstraten, F. A. (2006) The scope and limits of top-down attention in unconscious visual processing. Current Biology, vol. 16, no. 23, pp. 2332–2336. https://doi.org/10.1016/j.cub.2006.10.001
Kim, Y., Spruston, N. (2012) Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum. Hippocampus, vol. 22, no. 4. pp. 693–706. https://doi.org/10.1002/hipo.20931
Koivisto, M., Grassini, S., Salminen-Vaparanta, N., Revonsuo A. (2017) Different electrophysiological correlates of visual awareness for detection and identification. Journal of Cognitive Neuroscience, vol. 29, no. 9, pp. 1621–1631. https://doi.org/10.1162/jocn_a_01149
Kozak, R., Bowman, E. M., Latimer, M. P. et al. (2005) Excitotoxic lesions of the pedunculopontine tegmental nucleus in rats impair performance on a test of sustained attention. Experimental Brain Research, vol. 162, no. 2, pp. 257–264. https://doi.org/10.1007/s00221-004-2143-3
Kranczioch, C., Debener, S., Schwarzbach, J. et al. (2005) Neural correlates of conscious perception in the attentional blink. NeuroImage, vol. 24, no. 3, pp. 704–714. https://doi.org/10.1016/j.neuroimage.2004.09.024
Leszczyński, M., Staudigl, T. (2016) Memory-guided attention in the anterior thalamus. Neuroscience & Biobehavioral Reviews, vol. 66, pp. 163–165. https://doi.org/10.1016/j.neubiorev.2016.04.015
Linley, S. B., Gallo, M. M., Vertes, R. P. (2016) Lesions of the ventral midline thalamus produce deficits in reversal learning and attention on an odor texture set shifting task. Brain Research, vol. 1649, pt. A, pp. 110–122. https://doi.org/10.1016/j.brainres.2016.08.022
Madl, T., Baars, B. J., Franklin, S. (2011) The timing of the cognitive cycle. PLoS One, vol. 6, no. 4, article e14803. https://doi.org/10.1371/journal.pone.0014803
Marinelli, L., Quartarone, A., Hallett, M. et al. (2017) The many facets of motor learning and their relevance for Parkinson’s disease. Clinical Neurophysiology, vol. 128, no. 7, pp. 1127–1141. https://doi.org/10.1016/j.clinph.2017.03.042
McKenna, J. T., Vertes, R. P. (2004) Afferent projections to nucleus reuniens of the thalamus. Journal of Comparative Neurology, vol. 480, no. 2, pp. 115–142. https://doi.org/10.1002/cne.20342
Mori, F., Okada, K. I., Nomura, T. et al. (2016) The pedunculopontine tegmental nucleus as a motor and cognitive interface between the cerebellum and basal ganglia. Frontiers in Neuroanatomy, vol. 10, article 109. https://doi.org/10.3389/fnana.2016.00109
Naghavi, H. R., Nyberg, L. (2005) Common fronto-parietal activity in attention, memory, and consciousness: Shared demands on integration? Consciousness and Cognition, vol. 14, no. 2, pp. 390–425. https://doi.org/10.1016/j.concog.2004.10.003
Nakajima, M., Schmitt, L. I., Halassa, M. M. (2019) Prefrontal cortex regulates sensory filtering through a basal ganglia-to-thalamus pathway. Neuron, vol. 103, no. 3, pp. 445–458. https://doi.org/10.1016/j.neuron.2019.05.026
Nishioka, T., Hamaguchi, K., Yawata, S. et al. (2020) Chemogenetic suppression of the subthalamic nucleus induces attentional deficits and impulsive action in a five-choice serial reaction time task in mice. Frontiers in System Neuroscience, vol. 14, article 38. https://doi.org/10.1016/j.neuron.2019.05.026
O’Donnell, P., Grace, A. A. (1995) Synaptic interactions among excitatory afferents to nucleus accumbens neurons: Hippocampal gating of prefrontal cortical input. Journal of Neuroscience, vol. 15, no. 5, pp. 3622–3639. https://doi.org/10.1523/JNEUROSCI.15-05-03622.1995
Parent, A.; Hazrati, L. N. (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Research Review, vol. 20, no. 1, pp. 91–127. https://doi.org/10.1016/0165-0173(94)00007-c
Pazo, J. H., Barceló, A. C., Bellantonio, E. et al. (2013) Electrophysiologic study of globus pallidus projections to the thalamic reticular nucleus. Brain Research Bulletin, vol. 94, pp. 82–89. https://doi.org/10.1016/j.brainresbull.2013.02.009
Pourtois, G., Schettino, A., Vuilleumier, P. (2013) Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biological Psychology, vol. 92¸ no. 3, pp. 492–512. https://doi.org/10.1016/j.biopsycho.2012.02.007
Pugnaghi, G., Memmert, D., Kreitz, C. (2020) Loads of unconscious processing: The role of perceptual load in processing unattended stimuli during inattentional blindness. Attention, Perception, & Psychophysics, vol. 82, no. 5, pp. 2641–2651. https://doi.org/10.3758/s13414-020-01982-8
Raffone, A., Srinivasan, N., van Leeuwen, C. (2014) The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation. Philosophical Transactions of the Royal Society B: Biological Science, vol. 369, no. 1641, article 20130215. https://doi.org/10.1098/rstb.2013.0215
Raidvee, A., Toom, M., Allik, J. (2021) A method for detection of inattentional feature blindness. Attention, Perception, & Psychophysics, vol. 83, no. 3, pp. 1282–1289. https://doi.org/10.3758/s13414-020-02234-5
Redinbaugh, M. J., Phillips, J. M., Kambi, N. A. et al. (2020) Thalamus modulates consciousness via layer-specific control of cortex. Neuron, vol. 106, no. 1, pp. 66–75. https://doi.org/10.1016/j.neuron.2020.01.005
Rutiku, R., Martin, M., Bachmann, T. et al. (2015) Does the p300 reflect conscious perception or its consequences? Neuroscience, vol. 298, pp. 180–189. https://doi.org/10.1016/j.neuroscience.2015.04.029
Saalmann, Y. B. (2014) Intralaminar and medial thalamic influence on cortical synchrony, information transmission and cognition. Frontiers in System Neuroscience, vol. 8, article 83. https://doi.org/10.3389/fnsys.2014.00083
Schliebs, R., Arendt, T. (2011) The cholinergic system in aging and neuronal degeneration. Behavioral Brain Research, vol. 221, no. 2, pp. 555–563. https://doi.org/10.1016/j.bbr.2010.11.058
Schmalbach, B., Günther, V., Raethjen, J. et al. (2014) The subthalamic nucleus influences visuospatial attention in humans. Journal of Cognitive Neuroscience, vol. 26, no. 3, pp. 543–550. https://doi.org/10.1162/jocn_a_00502
Schweizer, T. A., Alexander, M. P., Cusimano, M. et al. (2007) Fast and efficient visuotemporal attention requires the cerebellum. Neuropsychologia, vol. 45, no. 13, pp. 3068–3074. https://doi.org/10.1016/j.neuropsychologia.2007.05.018
Shafto, J. P., Pitts, M. A. (2015) Neural signatures of conscious face perception in an inattentional blindness paradigm. Journal of Neuroscience, vol. 35, no. 31, pp. 10940–10948. https://doi.org/10.1523/JNEUROSCI.0145-15.2015
Sherman, S. M. (2017) Functioning of Circuits Connecting Thalamus and Cortex. Comprehensive Physiology, vol. 7, no. 2, pp. 713–739. https://doi.org/10.1002/cphy.c160032
Silkis, I. (2001) The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. II. Mechanism of synergistic modulation of thalamic activity via the direct and indirect pathways through the basal ganglia. Biosystems, vol. 59, no. 1, pp. 7–14. https://doi.org/10.1016/s0303-2647(00)00135-0
Silkis, I. (2007) A hypothetical role of cortico-basal ganglia-thalamocortical loops in visual processing. Biosystems, vol. 89, no. 1–3, pp. 227–235. https://doi.org/10.1016/j.biosystems.2006.04.020
Slagter, H. A., Mazaheri, A., Reteig, L. C. et al. (2017) Contributions of the ventral striatum to conscious perception: An intracranial EEG study of the attentional blink. Journal of Neuroscience, vol. 37, no. 5, pp. 1081–1089. https://doi.org/10.1523/JNEUROSCI.2282-16.2016
Slagter, H. A., van Wouwe, N. C., Kanoff, K. et al. (2016) Dopamine and temporal attention: An attentional blink study in Parkinson’s disease patients on and off medication. Neuropsychologia, vol. 91, pp. 407–414. https://doi.org/10.1016/j.neuropsychologia.2016.09.006
Summerfield, J. J., Lepsien, J., Gitelman, D. R. et al. (2006) Orienting attention based on long-term memory experience. Neuron, vol. 49, no. 6, pp. 905–916. https://doi.org/10.1016/j.neuron.2006.01.021
Vitale, F., Capozzo, A., Mazzone, P. et al. (2019) Neurophysiology of the pedunculopontine tegmental nucleus. Neurobiology of Disease, vol. 128, pp. 19–30. https://doi.org/10.1016/j.nbd.2018.03.004
Wang, J., Barbas, H. (2018) Specificity of primate amygdalar pathways to hippocampus. Journal of Neuroscience, vol. 38, no. 47, pp. 10019–10041. https://doi.org/10.1523/JNEUROSCI.1267-18.2018
Wang, H., Pickel, V. M. (2002) Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus. Journal of Comparative Neurology, vol. 442, no. 4, pp. 392–404. https://doi.org/10.1002/cne.10086
Zorzo, C., Arias, J. L., Méndez, M. (2021) Hippocampus and cortex are involved in the retrieval of a spatial memory under full and partial cue availability. Behavioral Brain Research, vol. 405, pp. 113204. https://doi.org/10.1016/j. bbr.2021.113204
REFERENCES
Anokhin, K. V. (2021) Kognitom: v poiskakh fundamental’noj nejronauchnoj teorii soznaniya [Cognitome: In search of fundamental neuroscience theory of consciousness]. Zhurnal Vysshej Nervnoj Deyatel’nosti Imeni I. P. Pavlova, vol. 71, no. 1, pp. 39–71. https://doi.org/10.31857/S0044467721010032 (In Russian)
Asplund, C. L., Fougnie, D., Zughni, S. et al. (2014) The attentional blink reveals the probabilistic nature of discrete conscious perception. Psychological Science, vol. 25, no. 3, pp. 824–831. https://doi.org/10.1177/0956797613513810 (In English)
Baars, B. J. (2005) Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Progress in Brain Research, vol. 150, pp. 45–53. https://doi.org/10.1016/S0079-6123(05)50004-9 (In English)
Birrell, J. M., Brown, V. J. (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. Journal of Neuroscience, vol. 20, no. 11, pp. 4320–4324. https://doi.org/10.1523/JNEUROSCI.20-11-04320.2000 (In English)
Bočková, M., Chládek, J., Jurák, P. et al. (2011) Involvement of the subthalamic nucleus and globus pallidus internus in attention. Journal of Neural Transmission, vol. 118, no. 8, pp. 1235–1245. https://doi.org/10.1007/s00702-010-0575-4 (In English)
Cassel, J. C., Ferraris, M., Quilichini, P. et al. (2021) The reuniens and rhomboid nuclei of the thalamus: A crossroads for cognition-relevant information processing? Neuroscience & Biobehavioral Reviews, vol. 126, pp. 338–360. https://doi.org/10.1016/j.neubiorev.2021.03.023 (In English)
Chang, D. I., Lissek, S., Ernst, T. M. et al. (2015) Cerebellar contribution to context processing in extinction learning and recall. Cerebellum, vol. 14, no. 6, pp. 670–676. https://doi.org/10.1007/s12311-015-0670-z (In English)
Chudasama, Y., Robbins, T. W. (2004) Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacology, vol. 29, no. 9, pp. 1628–1636. https://doi.org/10.1038/sj.npp.1300490 (In English)
Ciaramelli, E., Grady, C. L., Moscovitch, M. (2008) Top-down and bottom-up attention to memory: a hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia, vol. 46, no. 7, pp. 1828–1851. https://doi.org/10.1016/j.neuropsychologia.2008.03.022 (In English)
Colzato, L. S., Slagter, H. A., Spapé, M. M. et al. (2008) Blinks of the eye predict blinks of the mind. Neuropsychologia, vol. 46, no. 13, pp. 3179–3183. https://doi.org/10.1016/j.neuropsychologia.2008.07.006 (In English)
Connell, L., Lynott, D. (2016) Do we know what we’re simulating? Information loss on transferring unconscious perceptual simulation to conscious imagery. The Journal of Experimental Psychology: Learning, Memory and Cognition, vol. 42, no. 8, pp. 1218–1232. https://doi.org/10.1037/xlm0000245 (In English)
Edelman, G. M., Gally, J. A., Baars, B. J. (2011) Biology of consciousness. Frontiers in Psychology, vol. 25, no. 2, article 4. https://doi.org/10.3389/fpsyg.2011.00004 (In English)
Ekstrom, A. D., Yonelinas, A. P. (2020) Precision, binding, and the hippocampus: Precisely what are we talking about? Neuropsychologia, vol. 138, article 107341. https://doi.org/10.1016/j.neuropsychologia.2020.107341 (In English)
Finch, D. M. (1996) Neurophysiology of converging synaptic inputs from the rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens. Hippocampus, vol. 6, no. 5, pp. 495–512. https://doi.org/10.1002/(SICI)1098-1063(1996)6:5<495::AID-HIPO3>3.0.CO;2-I (In English)
Fischer, J., Schwiecker, K., Bittner, V. et al. (2015) Modulation of attentional processing by deep brain stimulation of the pedunculopontine nucleus region in patients with parkinsonian disorders. Neuropsychology, vol. 29, no. 4, pp. 632–637. https://doi.org/10.1037/neu0000179 (In English)
Goldfarb, E. V., Chun, M. M., Phelps, E. A. (2016) Memory-guided attention: Independent contributions of the hippocampus and striatum. Neuron, vol. 89, no. 2, pp. 317–324. https://doi.org/10.1016/j.neuron.2015.12.014 (In English)
Günseli, E., Aly, M. (2020) Preparation for upcoming attentional states in the hippocampus and medial prefrontal cortex. Elife, vol. 9, article e53191. https://doi.org/10.7554/eLife.53191 (In English)
Gut, N. K., Winn, P. (2016) The pedunculopontine tegmental nucleus-A functional hypothesis from the comparative literature. Movement Disorders, vol. 31, no. 5, pp. 615–624. https://doi.org/10.1002/mds.26556 (In English)
Halassa, M. M., Kastner, S. (2017) Thalamic functions in distributed cognitive control. Nature Neuroscience, vol. 20, no. 12, pp. 1669–1679. https://doi.org/10.1038/s41593-017-0020-1 (In English)
Hutchinson, B. T. (2019) Toward a theory of consciousness: A review of the neural correlates of inattentional blindness. Neuroscience & Biobehavioral Reviews, vol. 104, pp. 87–99. https://doi.org/10.1016/j.neubiorev.2019.06.003 (In English)
Hirsch, J. A., Chan, J. C., Yin, T. C. (1985) Responses of neurons in the cat’s superior colliculus to acoustic stimuli. I. Monaural and binaural response properties. Journal of Neurophysiology, vol. 53, no. 3, pp. 726–745. https://doi.org/10.1152/jn.1985.53.3.726 (In English)
Hoover, W. B., Vertes, R. P. (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Structure and Function, vol. 212, no. 2, pp. 149–179. https://doi.org/10.1007/s00429-007-0150-4 (In English)
Hsu, S. M., George, N., Wyart, V. et al. (2011) Voluntary and involuntary spatial attentions interact differently with awareness. Neuropsychologia, vol. 49, no. 9, pp. 2465–2474. https://doi.org/10.1016/j.neuropsychologia.2011.04.024 (In English)
Huettel, S. A., Güzeldere, G., McCarthy, G. (2001) Dissociating the neural mechanisms of visual attention in change detection using functional MRI. Journal of Cognitive Neuroscience, vol. 13, no. 7, pp. 1006–1018. https://doi.org/10.1162/089892901753165908 (In English)
Inglis, W. L, Olmstead, M. C., Robbins, T. W. (2001) Selective deficits in attentional performance on the 5-choice serial reaction time task following pedunculopontine tegmental nucleus lesions. Behavioral Brain Research, vol. 123, no. 2, pp. 117–131. https://doi.org/10.1016/s0166-4328(01)00181-4 (In English)
Jiang, Y., Tian, Y., Wang, K. (2013) The change of attentional blink and repetition blindness after cerebellar lesions. Journal of Clinical Neuroscience, vol. 20, no. 12, pp. 1742–1746. https://doi.org/10.1016/j.jocn.2013.01.022 (In English)
Kanai, R., Tsuchiya, N., Verstraten, F. A. (2006) The scope and limits of top-down attention in unconscious visual processing. Current Biology, vol. 16, no. 23, pp. 2332–2336. https://doi.org/10.1016/j.cub.2006.10.001 (In English)
Kim, Y., Spruston, N. (2012) Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum. Hippocampus, vol. 22, no. 4. pp. 693–706. https://doi.org/10.1002/hipo.20931 (In English)
Koivisto, M., Grassini, S., Salminen-Vaparanta, N., Revonsuo A. (2017) Different electrophysiological correlates of visual awareness for detection and identification. Journal of Cognitive Neuroscience, vol. 29, no. 9, pp. 1621–1631. https://doi.org/10.1162/jocn_a_01149 (In English)
Kozak, R., Bowman, E. M., Latimer, M. P. et al. (2005) Excitotoxic lesions of the pedunculopontine tegmental nucleus in rats impair performance on a test of sustained attention. Experimental Brain Research, vol. 162, no. 2, pp. 257–264. https://doi.org/10.1007/s00221-004-2143-3 (In English)
Kranczioch, C., Debener, S., Schwarzbach, J. et al. (2005) Neural correlates of conscious perception in the attentional blink. NeuroImage, vol. 24, no. 3, pp. 704–714. https://doi.org/10.1016/j.neuroimage.2004.09.024 (In English)
Leszczyński, M., Staudigl, T. (2016) Memory-guided attention in the anterior thalamus. Neuroscience & Biobehavioral Reviews, vol. 66, pp. 163–165. https://doi.org/10.1016/j.neubiorev.2016.04.015 (In English)
Linley, S. B., Gallo, M. M., Vertes, R. P. (2016) Lesions of the ventral midline thalamus produce deficits in reversal learning and attention on an odor texture set shifting task. Brain Research, vol. 1649, pt. A, pp. 110–122. https://doi.org/10.1016/j.brainres.2016.08.022 (In English)
Madl, T., Baars, B. J., Franklin, S. (2011) The timing of the cognitive cycle. PLoS One, vol. 6, no. 4, article e14803. https://doi.org/10.1371/journal.pone.0014803 (In English)
Marinelli, L., Quartarone, A., Hallett, M. et al. (2017) The many facets of motor learning and their relevance for Parkinson’s disease. Clinical Neurophysiology, vol. 128, no. 7, pp. 1127–1141. https://doi.org/10.1016/j.clinph.2017.03.042 (In English)
McKenna, J. T., Vertes, R. P. (2004) Afferent projections to nucleus reuniens of the thalamus. Journal of Comparative Neurology, vol. 480, no. 2, pp. 115–142. https://doi.org/10.1002/cne.20342 (In English)
Mori, F., Okada, K. I., Nomura, T. et al. (2016) The pedunculopontine tegmental nucleus as a motor and cognitive interface between the cerebellum and basal ganglia. Frontiers in Neuroanatomy, vol. 10, article 109. https://doi.org/10.3389/fnana.2016.00109 (In English)
Naghavi, H. R., Nyberg, L. (2005) Common fronto-parietal activity in attention, memory, and consciousness: Shared demands on integration? Consciousness and Cognition, vol. 14, no. 2, pp. 390–425. https://doi.org/10.1016/j.concog.2004.10.003 (In English)
Nakajima, M., Schmitt, L. I., Halassa, M. M. (2019) Prefrontal cortex regulates sensory filtering through a basal ganglia-to-thalamus pathway. Neuron, vol. 103, no. 3, pp. 445–458. https://doi.org/10.1016/j.neuron.2019.05.026 (In English)
Nishioka, T., Hamaguchi, K., Yawata, S. et al. (2020) Chemogenetic suppression of the subthalamic nucleus induces attentional deficits and impulsive action in a five-choice serial reaction time task in mice. Frontiers in System Neuroscience, vol. 14, article 38. https://doi.org/10.1016/j.neuron.2019.05.026 (In English)
O’Donnell, P., Grace, A. A. (1995) Synaptic interactions among excitatory afferents to nucleus accumbens neurons: Hippocampal gating of prefrontal cortical input. Journal of Neuroscience, vol. 15, no. 5, pp. 3622–3639. https://doi.org/10.1523/JNEUROSCI.15-05-03622.1995 (In English)
Parent, A.; Hazrati, L. N. (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Research Review, vol. 20, no. 1, pp. 91–127. https://doi.org/10.1016/0165-0173(94)00007-c (In English)
Pazo, J. H., Barceló, A. C., Bellantonio, E. et al. (2013) Electrophysiologic study of globus pallidus projections to the thalamic reticular nucleus. Brain Research Bulletin, vol. 94, pp. 82–89. https://doi.org/10.1016/j.brainresbull.2013.02.009 (In English)
Pourtois, G., Schettino, A., Vuilleumier, P. (2013) Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biological Psychology, vol. 92¸ no. 3, pp. 492–512. https://doi.org/10.1016/j.biopsycho.2012.02.007 (In English)
Pugnaghi, G., Memmert, D., Kreitz, C. (2020) Loads of unconscious processing: The role of perceptual load in processing unattended stimuli during inattentional blindness. Attention, Perception, & Psychophysics, vol. 82, no. 5, pp. 2641–2651. https://doi.org/10.3758/s13414-020-01982-8 (In English)
Raffone, A., Srinivasan, N., van Leeuwen, C. (2014) The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation. Philosophical Transactions of the Royal Society B: Biological Science, vol. 369, no. 1641, article 20130215. https://doi.org/10.1098/rstb.2013.0215 (In English)
Raidvee, A., Toom, M., Allik, J. (2021) A method for detection of inattentional feature blindness. Attention, Perception, & Psychophysics, vol. 83, no. 3, pp. 1282–1289. https://doi.org/10.3758/s13414-020-02234-5 (In English)
Redinbaugh, M. J., Phillips, J. M., Kambi, N. A. et al. (2020) Thalamus modulates consciousness via layer-specific control of cortex. Neuron, vol. 106, no. 1, pp. 66–75. https://doi.org/10.1016/j.neuron.2020.01.005 (In English)
Rutiku, R., Martin, M., Bachmann, T. et al. (2015) Does the p300 reflect conscious perception or its consequences? Neuroscience, vol. 298, pp. 180–189. https://doi.org/10.1016/j.neuroscience.2015.04.029 (In English)
Saalmann, Y. B. (2014) Intralaminar and medial thalamic influence on cortical synchrony, information transmission and cognition. Frontiers in System Neuroscience, vol. 8, article 83. https://doi.org/10.3389/fnsys.2014.00083 (In English)
Schliebs, R., Arendt, T. (2011) The cholinergic system in aging and neuronal degeneration. Behavioral Brain Research, vol. 221, no. 2, pp. 555–563. https://doi.org/10.1016/j.bbr.2010.11.058 (In English)
Schmalbach, B., Günther, V., Raethjen, J. et al. (2014) The subthalamic nucleus influences visuospatial attention in humans. Journal of Cognitive Neuroscience, vol. 26, no. 3, pp. 543–550. https://doi.org/10.1162/jocn_a_00502 (In English)
Schweizer, T. A., Alexander, M. P., Cusimano, M. et al. (2007) Fast and efficient visuotemporal attention requires the cerebellum. Neuropsychologia, vol. 45, no. 13, pp. 3068–3074. https://doi.org/10.1016/j.neuropsychologia.2007.05.018 (In English)
Sergin, V. Ya. (2020) Avtootozhdestvlenie i sensorno-motornoe povtorenie kak fiziologicheskie mekhanizmy soznaniya [Autoidentification and sensory-motor rehearsal as physiological mechanisms of consciousness]. Zhurnal Vysshej Nervnoj Deyatel’nosti Imeni I. P. Pavlova — I. P. Pavlov Journal of Higher Nervous Activity, vol. 70, no. 5, pp. 696–720. https://doi.org/10.31857/S004446772005010X (In Russian)
Shafto, J. P., Pitts, M. A. (2015) Neural signatures of conscious face perception in an inattentional blindness paradigm. Journal of Neuroscience, vol. 35, no. 31, pp. 10940–10948. https://doi.org/10.1523/JNEUROSCI.0145-15.2015 (In English)
Sherman, S. M. (2017) Functioning of Circuits Connecting Thalamus and Cortex. Comprehensive Physiology, vol. 7, no. 2, pp. 713–739. https://doi.org/10.1002/cphy.c160032 (In English)
Sil’kis, I. G. (1995) Dlitel’nye izmeneniya effektivnosti vozbuditelnoj sinapticheskoj peredachi v talamo-kortikal’nykh setyakh, vyzvannye mikrostimulyatsiej neokorteksa [Long-term changes in the efficiency of excitatory synaptic transmission in the thalamocortical networks evoked by microstimulation of the neocortex]. Zhurnal Vysshej Nervnoj Deyatel’nosti Imeni I. P. Pavlova, vol. 45, no. 2, pp. 321–334. PMID: 7597829(In Russian)
Silkis, I. (2001) The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. II. Mechanism of synergistic modulation of thalamic activity via the direct and indirect pathways through the basal ganglia. Biosystems, vol. 59, no. 1, pp. 7–14. https://doi.org/10.1016/s0303-2647(00)00135-0 (In English)
Sil’kis, I. G. (2002) Unifitsirovannyj postsinapticheskij mekhanizm vliyaniya razlichnykh nejromodulyatorov na modifikatsiyu vozbuditel’nykh i tormoznykh vkhodov k nejronam gippokampa (gipoteza) [A unified postsynaptic mechanism for the effect of various neuromodulators on modification of potentiated and depressed inputs to hippocampal cells (hypothesis)]. Uspekhi Fiziologicheskikh Nauk, vol. 33, no. 1, pp. 40–57. PMID: 11881334 (In Russian)
Silkis, I. G. (2006) Vklad sinapticheskoj plastichnosti v bazal’nykh gangliyakh v obrabotku zritelnoj informatsii (gipoteticheskij mekhanizm) [A contribution of synaptic plasticity in the basal ganglia to processing of visual information]. Zhurnal Vysshej Nervnoj Deyatel’nosti Imeni I. P. Pavlova, vol. 56, no. 6, pp. 742–756. (In Russian)
Silkis, I. (2007) A hypothetical role of cortico-basal ganglia-thalamocortical loops in visual processing. Biosystems, vol. 89, no. 1–3, pp. 227–235. https://doi.org/10.1016/j.biosystems.2006.04.020 (In English)
Silkis, I. G. (2007) Rol’ dofamin-zavisimykh perestroek aktivnosti v tsepyakh kora — bazal’nye ganglii — thalamus — kora v zritelnom vnimanii (gipoteticheskij mekhanizm) [A role of dopamine-dependent activity reorganizations in the cortico-basal ganglia-thalamocortical loops in visual attention (hypothetical mechanism)]. Uspekhi Fiziologicheskikh Nauk, vol. 38, no. 4, pp. 21–38. PMID: 18064906 (In Russian)
Sil’kis, I. G. (2011) Preimushchestva ierarkhicheskogo obobshcheniya i khraneniya otobrazhenij assotsiatsij “ob’ekt— mesto” v polyakh gippokampa (gipoteza) [Benefits of hierarchical generalization and storage of the representations of “object-place” associations in the hippocampal subfields (a hypothesis)]. Zhurnal Vysshej Nervnoj Deyatel’nosti Imeni I. P. Pavlova, vol. 61, no. 1, pp. 5–23. (In Russian)
Sil’kis, I. G. (2014) Mekhanizmy vzaimozavisimogo vliyaniya prefrontaloj kory, gippokampa i mindaliny na funktsionirovanie bazal’nykh gangliev i vybor povedeniya [The mechanisms of interdependent influence of prefrontal cortex, hippocampus and amygdala on the basal ganglia functioning and selection of behaviour]. Zhurnal Vysshej Nervnoj Deyatel’nosti Imeni I. P. Pavlova, vol. 64, no. 1, pp. 82–100. https://doi.org/10.7868/S0044467714010110 (In Russian)
Silkis, I. G. (2015) O roli bazal’nykh gangliev v obrabotke slozhnykh zvukovykh stimulov i slukhovom vnimanii [A role of the basal ganglia in processing of complex sounds and auditory attention]. Uspekhi Fiziologicheskikh Nauk, vol. 46, no. 3, pp. 76–92. (In Russian)
Silkis, I. G. (2021а) Vliyanie dofamina na vzaimozavisimoe funktsionirovanie mozzhechka, bazal’nykh gangliev i novoj kory (gipoteticheskij mekhanizm) [Effect of dopamine on the interdependent functioning of the cerebellum, basal ganglia and neocortex (A hypothetical mechanism)]. Uspekhi Fiziologicheskikh Nauk, vol. 52, no. 1, pp. 49–63. https://doi.org/10.31857/S0301179821010094 (In Russian)
Silkis, I. G. (2021b) Vozmozhnye mekhanizmy vzaimozavisimogo uchastiya bazalnykh gangliev i mozzhechka v funktsionirovanii dvigatelnykh i sensornykh system [Possible mechanisms of interdependent participation of the basal ganglia and cerebellum in the functioning of motor and sensory systems]. Integrativnaja fiziologiya — Integrative Physiology, vol. 2, no. 2, pp. 135–146. https://doi.org/10.33910/2687-1270-2021-2-2-135-146 (In Russian)
Silkis, I. G. (2021c) Uchastie yader gipotalamusa v formirovanii assotsiatsij ob’ekt–mesto na nejronakh polya CA2 gippokampa (gipoteticheskij mekhanizm) [Involvement of hypothalamic nuclei in the generation of object-place associations on neurons of the hippocampal CA2 field (A hypothetical mechanism)]. Zhurnal Vysshej Nervnoj Deyatel’nosti Imeni I. P. Pavlova, vol. 71, no. 2, pp. 147–163. https://doi.org/10.31857/S0044467721020106 (In Russian)
Silkis, I. G. (2022) Mekhanizmy funktsionirovaniya konnektoma, vklyuchayushchego neokorteks, gippokamp, bazal’nye ganglii, mozzhechok i talamus [Mechanisms of functioning of a connectome that includes the neocortex, hippocampus, basal ganglia, cerebellum and thalamus]. Zhurnal Vysshej Nervnoj Deyatel’nosti Imeni I. P. Pavlova, vol. 72, no. 1, pp. 36–54. https://doi.org/10.31857/S0044467722010105 (In Russian)
Slagter, H. A., Mazaheri, A., Reteig, L. C. et al. (2017) Contributions of the ventral striatum to conscious perception: An intracranial EEG study of the attentional blink. Journal of Neuroscience, vol. 37, no. 5, pp. 1081–1089. https://doi.org/10.1523/JNEUROSCI.2282-16.2016 (In English)
Slagter, H. A., van Wouwe, N. C., Kanoff, K. et al. (2016) Dopamine and temporal attention: An attentional blink study in Parkinson’s disease patients on and off medication. Neuropsychologia, vol. 91, pp. 407–414. https://doi.org/10.1016/j.neuropsychologia.2016.09.006 (In English)
Summerfield, J. J., Lepsien, J., Gitelman, D. R. et al. (2006) Orienting attention based on long-term memory experience. Neuron, vol. 49, no. 6, pp. 905–916. https://doi.org/10.1016/j.neuron.2006.01.021 (In English)
Veber, N. V., Rapoport, S. Sh., Sil’kis, I. G. et al. (1988) Dlitelnye posttetanicheskie izmeneniya impulsnykh reaktsij nejronov zritel’noj kory koshek [Long-term post-tetanic changes in the impulse reactions of the visual cortex neurons in the cat]. Zhurnal Vysshej Nervnoj Deyatel’nosti Imeni I. P. Pavlova, vol. 38, no. 5, pp. 963–965. PMID: 3223081 (In Russian)
Vitale, F., Capozzo, A., Mazzone, P. et al. (2019) Neurophysiology of the pedunculopontine tegmental nucleus. Neurobiology of Disease, vol. 128, pp. 19–30. https://doi.org/10.1016/j.nbd.2018.03.004 (In English)
Wang, J., Barbas, H. (2018) Specificity of primate amygdalar pathways to hippocampus. Journal of Neuroscience, vol. 38, no. 47, pp. 10019–10041. https://doi.org/10.1523/JNEUROSCI.1267-18.2018 (In English)
Wang, H., Pickel, V. M. (2002) Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus. Journal of Comparative Neurology, vol. 442, no. 4, pp. 392–404. https://doi.org/10.1002/cne.10086 (In English)
Zorzo, C., Arias, J. L., Méndez, M. (2021) Hippocampus and cortex are involved in the retrieval of a spatial memory under full and partial cue availability. Behavioral Brain Research, vol. 405, pp. 113204. https://doi.org/10.1016/j.bbr.2021.113204 (In English)
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2022 Изабелла Гершовна Силькис
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Автор предоставляет материалы на условиях публичной оферты и лицензии CC BY-NC 4.0. Эта лицензия позволяет неограниченному кругу лиц копировать и распространять материал на любом носителе и в любом формате, но с обязательным указанием авторства и только в некоммерческих целях. После публикации все статьи находятся в открытом доступе.
Авторы сохраняют авторские права на статью и могут использовать материалы опубликованной статьи при подготовке других публикаций, а также пользоваться печатными или электронными копиями статьи в научных, образовательных и иных целях. Право на номер журнала как составное произведение принадлежит издателю.