Фармакологический активатор механочувствительных каналов Piezo1 вызывает увеличение жесткости сенсорных нейронов
DOI:
https://doi.org/10.33910/2687-1270-2024-5-4-336-344Ключевые слова:
сенсорные нейроны, атомно-силовая микроскопия, каналы Piezo1, Jedi2, органотипическая культура тканиАннотация
Одними из важнейших участников механизмов внутриклеточной механотрансдукции являются открытые в 2010 году механочувствительные ионные каналы семейства Piezo. Эти каналы (Piezo1 и Piezo2) обнаружены во многих типах клеток, включая первичные сенсорные нейроны, причем их роль здесь пока неясна. Изучению механизмов функционирования каналов Piezo1 может способствовать применение специфических фармакологических активаторов этих каналов, например, Jedi2. В литературе отсутствуют данные о влиянии Jedi2 на нейроны. В настоящей работе исследованы эффекты Jedi2 на первичные сенсорные нейроны. С помощью метода органотипической культуры ткани было установлено, что Jedi2 дозозависимо регулирует рост нейритов сенсорных нейронов спинномозговых ганглиев. Методом атомно-силовой микроскопии было показано, что указанный агент в концентрации 10 мкМ, которая не влияет на рост нейритов сенсорных нейронов, приводит к увеличению жесткости первичных сенсорных нейронов. Полученный результат можно объяснить опосредованным каналами Piezo1 запуском внутриклеточных Са2+-активируемых сигнальных путей, что указывает на возможность эффективного применения Jedi2 в концентрации 10 мкМ для выяснения молекулярных механизмов Piezo1-опосредованной механотрансдукции в первичных сенсорных нейронах при физиологически адекватных условиях.
Библиографические ссылки
Benech, J. C., Benech, N., Zambrana, A. I. et al. (2014) Diabetes increases stiffness of live cardiomyocytes measured by atomic force microscopy nanoindentation. American Journal of Physiology — Cell Physiology, vol. 307, no. 10, pp. C910–C919. https://doi.org/10.1152/ajpcell.00192.2013 (In English)
Binnig, G., Quate, C. F., Gerber, C. (1986) Atomic force microscope. Physical Review Letters, vol. 56, no. 9, pp. 930– 933. https://doi.org/10.1103/PhysRevLett.56.930 (In English)
Canales Coutiño, B., Mayor, R. (2021) Mechanosensitive ion channels in cell migration. Cells & Development, vol. 166, article 203683. https://doi.org/10.1016/j.cdev.2021.203683 (In English)
Cho, Y. S., Han, H. M., Jeong, S. Y. et al. (2022) Expression of Piezo1 in the trigeminal neurons and in the axons that innervate the dental pulp. Frontiers in Cellular Neuroscience, vol. 16, article 945948. https://doi.org/10.3389/fncel.2022.945948 (In English)
Chubinskiy-Nadezhdin, V. I., Vasileva, V. Y., Vassilieva, I. O. et al. (2019) Agonist-induced Piezo1 activation suppresses migration of transformed fibroblasts. Biochemical and Biophysical Research Communications, vol. 514, no. 1, pp. 173–179. https://doi.org/10.1016/j.bbrc.2019.04.139 (In English)
Coste, B., Delmas, P. (2024) PIEZO ion channels in cardiovascular functions and diseases. Circulation Research, vol. 134, no. 5, pp. 572–591. https://doi.org/10.1161/CIRCRESAHA.123.322798 (In English)
Coste, B., Mathur, J., Schmidt, M. et al. (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science, vol. 330, no. 6000, pp. 55–60. https://doi.org/10.1126/science.1193270 (In English)
Cox, C. D., Bae, C., Ziegler, L. et al. (2016) Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nature Communications, vol. 7, no. 1, article 10366. https://doi.org/10.1038/ncomms10366 (In English)
Cox, C. D., Gottlieb, P. A. (2019) Amphipathic molecules modulate PIEZO1 activity. Biochemical Society Transactions, vol. 47, no. 6, pp. 1833–1842. https://doi.org/10.1042/bst20190372 (In English)
Dienes, B., Bazsó, T., Szabó, L., Csernoch, L. (2023) The role of the Piezo1 mechanosensitive channel in the musculoskeletal system. International Journal of Molecular Sciences, vol. 24, no. 7, article 6513. https://doi.org/10.3390/ijms24076513 (In English)
Douguet, D., Patel, A., Xu, A. et al. (2019) Piezo ion channels in cardiovascular mechanobiology. Trends in Pharmacological Sciences, vol. 40, no. 12, pp. 956–970. https://doi.org/10.1016/j.tips.2019.10.002 (In English)
Fang, X.-Z., Zhou, T., Xu, J.-Q. et al. (2021) Structure, kinetic properties and biological function of mechanosensitive Piezo channels. Cell & Bioscience, vol. 11, no. 1, article 13. https://doi.org/10.1186/s13578-020-00522-z (In English)
Gnanasambandam, R., Gottlieb, P. A., Sachs, F. (2017) The kinetics and the permeation properties of Piezo channels. Current Topics in Membranes, vol. 79, pp. 275–307. https://doi.org/10.1016/bs.ctm.2016.11.004 (In English)
Haase, K., Pelling, A. E. (2015) Investigating cell mechanics with atomic force microscopy. Journal of the Royal Society Interface, vol. 12, no. 104, article 20140970. https://doi.org/10.1098/rsif.2014.0970 (In English)
Hutter, J. L., Bechhoefer, J. (1993) Calibration of atomic-force microscope tips. Review of Scientific Instruments, vol. 64, no. 7, pp. 1868–1873. https://doi.org/10.1063/1.1143970 (In English)
Jiang, F., Yin, K., Wu, K. et al. (2021) The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction. Nature Communications, vol. 12, no. 1, article 869. https://doi.org/10.1038/s41467-021-21178-4 (In English)
Kang, H., Hong, Z., Zhong, M. et al. (2019) Piezo1 mediates angiogenesis through activation of MT1-MMP signaling. American Journal of Physiology — Cell Physiology, vol. 316, no. 1, pp. C92–C103. https://doi.org/10.1152/ajpcell.00346.2018 (In English)
Khalisov, M. M., Ankudinov, A. V., Penniyaynen, V. A. et al. (2015) Application of atomic force microscopy for investigation of Na+,K+-ATPase signal-transducing function. Acta Physiologica Hungarica, vol. 102, no. 2, pp. 125–130. https://doi.org/10.1556/036.102.2015.2.2 (In English)
Khalisov, M. M., Berintseva, A. V., Podzorova, S. A. et al. (2024) Primenenie metoda atomno-silovoj mikroskopii dlya issledovaniya otvetov mekhanochuvstvitel’nykh kanalov Piezo1 fibroblastov serdtsa [Atomic force microscopy as a method to study the responses of mechanosensitive Piezo1 channels of cardiac fibroblasts]. Integrativnaya fiziologiya — Integrative Physiology, vol. 5, no. 1, pp. 51–59. https://doi.org/10.33910/2687-1270-2024-5-1-50-59 (In Russian)
Khalisov, M. M., Penniyaynen, V. A., Podzorova, S. A. et al. (2020) Kolkhitsin izmenyaet strukturu tsitoskeleta fibroblastov: kolichestvennoe issledovanie adaptivnoj kletochnoj reaktsii metodami atomno-silovoj i konfokal’noj lazernoj skaniruyushchej mikroskopii [The effect of colchicine on the structure of the fibroblast cytoskeleton: A quantitative study of an adaptive cell response by means of atomic force and confocal laser scanning microscopy methods]. Integrativnaya fiziologiya — Integrative Physiology, vol. 1, no. 2, pp. 115–122. https://doi.org/10.33910/2687-1270-2020-1-2-115-122 (In Russian)
Lai, A., Chen, Y. C., Cox, C. D. et al. (2021) Analyzing the shear-induced sensitization of mechanosensitive ion channel Piezo-1 in human aortic endothelial cells. Journal of Cellular Physiology, vol. 236, no. 4, pp. 2976–2987. https://doi.org/10.1002/jcp.30056 (In English)
Li, X., Hu, J., Zhao, X. et al. (2022) Piezo channels in the urinary system. Experimental & Molecular Medicine, vol. 54, no. 6, pp. 697–710. https://doi.org/10.1038/s12276-022-00777-1 (In English)
Liang, X., Liu, S., Wang, X. et al. (2021) Alteration of nanomechanical properties of pancreatic cancer cells through anticancer drug treatment revealed by atomic force microscopy. Beilstein Journal of Nanotechnology, vol. 12, no. 1, pp. 1372–1379. https://doi.org/10.3762/bjnano.12.101 (In English)
Lieber, S. C., Aubry, N., Pain, J. et al. (2004) Aging increases stiffness of cardiac myocytes measured by atomic force microscopy nanoindentation. American Journal of Physiology — Heart and Circulatory Physiology, vol. 287, no. 2, pp. H645–H651. https://doi.org/10.1152/ajpheart.00564.2003 (In English)
Lin, L. J., Ge, Y. M., Tian, Y. et al. (2020) Multi-scale mechanical investigation of articular cartilage suffered progressive pseudorheumatoid dysplasia. Clinical Biomechanics, vol. 79, article 104947. https://doi.org/10.1016/j.clinbiomech.2019.12.029 (In English)
Martinac, B., Cox, C. D. (2017) Mechanosensory transduction: Focus on ion channels. In: B. D. Roitberg (ed.). Reference module in life sciences. Amsterdam: Elsevier Publ., pp. 1–47. https://doi.org/10.1016/b978-0-12-809633-8.08094-8 (In English)
Mikhailov, N., Leskinen, J., Fagerlund, I. et al. (2019) Mechanosensitive meningeal nociception via Piezo channels: Implications for pulsatile pain in migraine? Neuropharmacology, vol. 149, pp. 113–123. https://doi.org/10.1016/j.neuropharm.2019.02.015 (In English)
Miles, L., Powell, J., Kozak, C., Song, Y. (2023) Mechanosensitive ion channels, axonal growth, and regeneration. The Neuroscientist, vol. 29, no. 4, pp. 421–444. https://doi.org/10.1177/10738584221088575 (In English)
Penniyaynen, V. A., Plakhova, V. B., Rogachevskii, I. V. et al. (2019) Molecular mechanisms and signaling by comenic acid in nociceptive neurons influence the pathophysiology of neuropathic pain. Pathophysiology, vol. 26, no. 3–4, pp. 245–352. https://doi.org/10.1016/j.pathophys.2019.06.003 (In English)
Pérez-Domínguez, S., Kulkarni, S. G., Rianna, C., Radmacher, M. (2020) Atomic force microscopy for cell mechanics and diseases. Neuroforum, vol. 26, no. 2, pp. 101–109. https://doi.org/10.1515/nf-2020-0001 (In English)
Plakhova, V. B., Penniyaynen, V. A., Rogachevskii, I. V. et al. (2020) Dual mechanism of modulation of NaV1.8 sodium channels by ouabain. Canadian Journal of Physiology and Pharmacology, vol. 98, no. 11, pp. 785–802. https://doi.org/10.1139/cjpp-2020-0197 (In English)
Ranade, S. S., Woo, S.-H., Dubin, A. E. et al. (2014) Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature, vol. 516, no. 7529, pp. 121–125. https://doi.org/10.1038/nature13980 (In English)
Ridone, P., Vassalli, M., Martinac, B. (2019) Piezo1 mechanosensitive channels: What are they and why are they important. Biophysical Reviews, vol. 11, no. 5, pp. 795–805. https://doi.org/10.1007/s12551-019-00584-5 (In English)
Roh, J., Hwang, S.-M., Lee, S.-H. et al. (2020) Functional expression of Piezo1 in dorsal root ganglion (DRG) neurons. International Journal of Molecular Sciences, vol. 21, no. 11, article 3834. https://doi.org/10.3390/ijms21113834 (In English)
Shin, S. M., Itson-Zoske, B., Fan, F. et al. (2023) Peripheral sensory neurons and non-neuronal cells express functional Piezo1 channels. Molecular Pain, vol. 19, article 17448069231174315. https://doi.org/10.1177/17448069231174315 (In English)
Sneddon, I. N. (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, vol. 3, no. 1, pp. 47–57. https://doi.org/10.1016/0020-7225(65)90019-4 (In English)
Stylianou, A., Lekka, M., Stylianopoulos, T. (2018) AFM assessing of nanomechanical fingerprints for cancer early diagnosis and classification: From single cell to tissue level. Nanoscale, vol. 10, no. 45, pp. 20930–20945. https://doi.org/10.1039/c8nr06146g (In English)
Syeda, R., Xu, J., Dubin, A. E. et al. (2015) Chemical activation of the mechanotransduction channel Piezo1. eLife, vol. 4, article e07369. https://doi.org/10.7554/eLife.07369 (In English)
Szczot, M., Nickolls, A. R., Lam, R. M. et al. (2021) The form and function of Piezo2. Annual Review of Biochemistry, vol. 90, no. 1, pp. 507–534. https://doi.org/10.1146/annurev-biochem-081720-023244 (In English)
Tee, S.-Y., Fu, J., Chen, C. S. et al. (2011) Cell shape and substrate rigidity both regulate cell stiffness. Biophysical Journal, vol. 100, no. 5, pp. L25–L27. https://doi.org/10.1016/j.bpj.2010.12.3744 (In English)
Vasileva, V., Morachevskaya, E., Sudarikova, A. et al. (2021) Selective chemical activation of Piezo1 in leukemia cell membrane: Single channel analysis. International Journal of Molecular Sciences, vol. 22, no. 15, article 7839. https://doi.org/10.3390/ijms22157839 (In English)
Volkers, L., Mechioukhi, Y., Coste, B. (2015) Piezo channels: From structure to function. Pflügers Archiv — European Journal of Physiology, vol. 467, no. 1, pp. 95–99. https://doi.org/10.1007/s00424-014-1578-z (In English)
Wang, H., Yuan, Z., Wang, B. et al. (2022) COMP (Cartilage Oligomeric Matrix Protein), a novel PIEZO1 regulator that controls blood pressure. Hypertension, vol. 79, no. 3, pp. 549–561. https://doi.org/10.1161/HYPERTENSIONAHA.121.17972 (In English)
Wang, J., La, J.-H., Hamill, O. P. (2019) Piezo1 is selectively expressed in small diameter mouse DRG neurons distinct from neurons strongly expressing TRPV1. Frontiers in Molecular Neuroscience, vol. 12, article 178. https://doi.org/10.3389/fnmol.2019.00178 (In English)
Wang, Y., Chi, S., Guo, H. et al. (2018) A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel. Nature Communications, vol. 9, no. 1, article 1300. https://doi.org/10.1038/s41467-018-03570-9 (In English)
Xu, X., Liu, S., Liu, H. et al. (2021) Piezo channels: Awesome mechanosensitive structures in cellular mechanotransduction and their role in bone. International Journal of Molecular Sciences, vol. 22, no. 12, article 6429. https://doi.org/10.3390/ijms22126429 (In English)
Zhang, M., Wang, Y., Geng, J. et al. (2019) Mechanically activated Piezo channels mediate touch and suppress acute mechanical pain response in mice. Cell Reports, vol. 26, no. 6, pp. 1419–1431. https://doi.org/10.1016/j.celrep.2019.01.056 (In English)
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2025 Валентина Альбертовна Пеннияйнен, Максим Миндигалеевич Халисов, Анна Владиславовна Беринцева, Светлана Александровна Подзорова, Борис Владимирович Крылов

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Автор предоставляет материалы на условиях публичной оферты и лицензии CC BY-NC 4.0. Эта лицензия позволяет неограниченному кругу лиц копировать и распространять материал на любом носителе и в любом формате, но с обязательным указанием авторства и только в некоммерческих целях. После публикации все статьи находятся в открытом доступе.
Авторы сохраняют авторские права на статью и могут использовать материалы опубликованной статьи при подготовке других публикаций, а также пользоваться печатными или электронными копиями статьи в научных, образовательных и иных целях. Право на номер журнала как составное произведение принадлежит издателю.