Cardiorespiratory feedback training as a non-pharmacological intervention and its application in stroke patients
DOI:
https://doi.org/10.33910/2687-1270-2020-1-3-196-201Ключевые слова:
cardiorespiratory coupling, cardiorespiratory feedback, biofeedback, cerebrovascular diseases, neurological diseases, stroke, heart rate variability biofeedbackАннотация
The interaction between cardiovascular and respiratory systems is a reciprocal one mediated by mechanical factors, autonomic nervous system, and baroreflex regulation and manifested in the changes in heart rate, blood pressure and ventilation. These changes can be rather easily registered and measured, which opens the opportunity for clinical use (both in diagnostics and therapy).
In the paper we briefly review the potential role and implementation of cardiorespiratory biofeedback in treating patients with neurological diseases, in particular, stroke survivors. The available evidence suggests that this method based on the existing cardiorespiratory coupling mechanisms may prove its efficacy in treating a range of medical conditions including cerebrovascular disorders. The prospects of cardiorespiratory biofeedback application in improving a stroke patient’s quality of life (including physical, emotional, and cognitive levels) and clinical status require further investigation. The topicality of determining the long-term effect of novel non-pharmacological interventions as an adjunct to conventional therapies is defined by their limitations and significant pharmacological load.
Библиографические ссылки
Abboud, F., Kumar, R. (2014) Obstructive sleep apnea and insight into mechanisms of sympathetic overactivity. The Journal of Clinical Investigation, vol. 124, no. 4, pp. 1454–1457. PMID: 24691480. DOI: 10.1172/JCI70420 (In English)
Bassett, D. (2016) A literature review of heart rate variability in depressive and bipolar disorders. The Australian and New Zealand Journal of Psychiatry, vol. 50, no. 6, pp. 511–519. PMID: 26698824. DOI: 10.1177/0004867415622689 (In English)
Ben Assayag, E., Tene, O., Korczyn, A. D. et al. (2017) High hair cortisol concentrations predict worse cognitive outcome after stroke: Results from the TABASCO prospective cohort study. Psychoneuroendocrinology, vol. 82, pp. 133–139. PMID: 28549269. DOI: 10.1016/j.psyneuen.2017.05.013 (In English)
Bourbonnais, D., Vanden Noven, S. (1989) Weakness in patients with hemiparesis. The American Journal of Occupational Therapy, vol. 43, no. 5, pp. 313–319. PMID: 2655457. DOI: 10.5014/ajot.43.5.313 (In English)
Bourbonnais, D., Vanden Noven, S., Pelletier, R. (1992) Incoordination in patients with hemiparesis. Canadian Journal of Public Health, vol. 83, suppl. 2, pp. S58–S63. PMID: 1468052. (In English)
Bronicki, R. A., Penny, D. J., Anas, N. G., Fuhrman, B. (2016) Cardiopulmonary interactions. Pediatric Critical Care Medicine, vol. 17, no. 8, suppl. 1, pp. S182–S193. PMID: 27490598. DOI: 10.1097/PCC.0000000000000829 (In English)
Cirstea, M. C., Levin, M. F. (2000) Compensatory strategies for reaching in stroke. Brain, vol. 123, no. 5, pp. 940–953. PMID: 10775539. DOI: 10.1093/brain/123.5.940 (In English)
Eddie, D., Vaschillo, E., Vaschillo, B., Lehrer, P. (2015) Heart rate variability biofeedback: Theoretical basis, delivery, and its potential for the treatment of substance use disorders. Addiction Research and Theory, vol. 23, no. 4, pp. 266–272. PMID: 28077937. DOI: 10.3109/16066359.2015.1011625 (In English)
Ferro, J. M., Caeiro, L., Figueira, M. L. (2016) Neuropsychiatric sequelae of stroke. Nature Reviews. Neurology, vol. 12, no. 5, pp. 269–280. PMID: 27063107. DOI: 10.1038/nrneurol.2016.46 (In English)
Gainotti, G., Marra, C. (2002) Determinants and consequences of post-stroke depression. Current Opinion in Neurology, vol. 15, no. 1, pp. 85–89. PMID: 11796955. DOI: 10.1097/00019052-200202000-00013 (In English)
Gevirtz, R. (2013) The promise of heart rate variability biofeedback: Evidence-based applications. Biofeedback, vol. 41, no. 3, pp. 110–120. DOI: 10.5298/1081-5937-41.3.01 (In English)
Gorman, J. M., Sloan, R. P. (2000) Heart rate variability in depressive and anxiety disorders. American Heart Journal, vol. 140, no. 4, suppl., pp. S77–S83. PMID: 11011352. DOI: 10.1067/mhj.2000.109981 (In English)
Henriques, G., Keffer, S., Abrahamson, C., Horst, S. J. (2011) Exploring the effectiveness of a computer-based heart rate variability biofeedback program in reducing anxiety in college students. Applied Psychophysiology and Biofeedback, vol. 36, no. 2, pp. 101–112. PMID: 21533678. DOI: 10.1007/s10484-011-9151-4 (In English)
Hilz, M. J., Liu, M., Roy, S., Wang, R. (2019) Autonomic dysfunction in the neurological intensive care unit. Clinical Autonomic Research, vol. 29, no. 3, pp. 301–311. PMID: 30022321. DOI: 10.1007/s10286-018-0545-8 (In English)
Kahl, K. G. (2018) Direct and indirect effects of psychopharmacological treatment on the cardiovascular system. Hormone Molecular Biology and Clinical Investigation, vol. 36, no. 1, article 20180054. PMID: 30427780. DOI: 10.1515/hmbci-2018-0054 (In English)
Kalmbach, D. A., Cuamatzi-Castelan, A. S., Tonnu, C. V. et al. (2018) Hyperarousal and sleep reactivity in insomnia: Current insights. Nature and Science of Sleep, vol. 10, pp. 193–201. PMID: 30046255. DOI: 10.2147/NSS.S138823 (In English)
Karavidas, M. K., Lehrer, P. M., Vaschillo, E. et al. (2007) Preliminary results of an open label study of heart rate variability biofeedback for the treatment of major depression. Applied Psychophysiology and Biofeedback, vol. 32, no. 1, pp. 19–30. PMID: 17333315. DOI: 10.1007/s10484-006-9029-z (In English)
Kemp, A. H., Brunoni, A. R., Santos, I. S. et al. (2014) Effects of depression, anxiety, comorbidity, and antidepressants on resting-state heart rate and its variability: An ELSA-Brasil cohort baseline study. The American Journal of Psychiatry, vol. 171, no. 12, pp. 1328–1334. PMID: 25158141. DOI: 10.1176/appi.ajp.2014.13121605 (In English)
Kober, S. E., Schweiger, D., Reichert, J. L. et al. (2017) Upper alpha based neurofeedback training in chronic stroke: Brain plasticity processes and cognitive effects. Applied Psychophysiology and Biofeedback, vol. 42, no. 1, pp. 69–83. PMID: 28197747. DOI: 10.1007/s10484-017-9353-5 (In English)
Koschke, M., Boettger, M. K., Schulz, S. et al. (2009) Autonomy of autonomic dysfunction in major depression. Psychosomatic Medicine, vol. 71, no. 8, pp. 852–860. PMID: 19779146. DOI: 10.1097/PSY.0b013e3181b8bb7a (In English)
Lehrer, P. M., Karavidas, M. K., Lu, S.-E. et al. (2010) Voluntarily produced increases in heart rate variability modulate autonomic effects of endotoxin induced systemic inflammation: An exploratory study. Applied Psychophysiology and Biofeedback, vol. 35, no. 4, pp. 303–315. PMID: 20635134. DOI: 10.1007/s10484-010-9139-5 (In English)
Lotze, M., Halsband, U. (2006) Motor imagery. Journal of Physiology. Paris, vol. 99, no. 4–6, pp. 386–395. PMID: 16716573. DOI: 10.1016/j.jphysparis.2006.03.012 (In English)
Pariante, C. M., Miller, A. H. (2001) Glucocorticoid receptors in major depression: Relevance to pathophysiology and treatment. Biological Psychiatry, vol. 49, no. 5, pp. 391–404. PMID: 11274650 DOI: 10.1016/s0006-3223(00)01088-x (In English)
Patron, E., Messerotti Benvenuti, S., Favretto, G. et al. (2013) Biofeedback assisted control of respiratory sinus arrhythmia as a biobehavioral intervention for depressive symptoms in patients after cardiac surgery: A preliminary study. Applied Psychophysiology and Biofeedback, vol. 38, no. 1, pp. 1–9. PMID: 22829151. DOI: 10.1007/s10484-012-9202-5 (In English)
Seiler, A., Camilo, M., Korostovtseva, L. et al. (2019) Prevalence of sleep-disordered breathing after stroke and TIA: A meta-analysis. Neurology, vol. 92, no. 7, article e648–e654. PMID: 30635478. DOI: 10.1212/WNL.0000000000006904 (In English)
Sharma, N., Pomeroy, V. M., Baron, J. C. (2006) Motor imagery: A backdoor to the motor system after stroke? Stroke, vol. 37, no. 7, pp. 1941–1952. PMID: 16741183. DOI: 10.1161/01.STR.0000226902.43357.fc (In English)
Simmons, L., Sharma, N., Baron, J.-C., Pomeroy, V. M. (2008) Motor imagery to enhance recovery after subcortical stroke: Who might benefit, daily dose, and potential effects. Neurorehabilitation and Neural Repair, vol. 22, no. 5, pp. 458–467. PMID: 18780881. DOI: 10.1177/1545968308315597 (In English)
Tan, G., Dao, T. K., Farmer, L. et al. (2011) Heart rate variability (HRV) and posttraumatic stress disorder (PTSD): A pilot study. Applied Psychophysiology and Biofeedback, vol. 36, no. 1, pp. 27–35. PMID: 20680439. DOI: 10.1007/s10484-010-9141-y (In English)
Thayer, J. F., Ahs, F., Fredrikson, M. et al. (2012) A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience and Behavioural Reviews, vol. 36, no. 2, pp. 747–756. PMID: 22178086. DOI: 10.1016/j.neubiorev.2011.11.00 (In English)
Thayer, J. F., Lane, R. D. (2007) The role of vagal function in the risk for cardiovascular disease and mortality. Biological Psychology, vol. 74, no. 2, pp. 224–242. PMID: 17182165. DOI: 10.1016/j.biopsycho.2005.11.013 (In English)
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2020 Валерия Всеволодовна Кемстач, Людмила Сергеевна Коростовцева, Игорь Всеволодович Саковский, Михаил Викторович Бочкарев, Анатолий Николаевич Алехин, Юрий Владимирович Свиряев
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Автор предоставляет материалы на условиях публичной оферты и лицензии CC BY-NC 4.0. Эта лицензия позволяет неограниченному кругу лиц копировать и распространять материал на любом носителе и в любом формате, но с обязательным указанием авторства и только в некоммерческих целях. После публикации все статьи находятся в открытом доступе.
Авторы сохраняют авторские права на статью и могут использовать материалы опубликованной статьи при подготовке других публикаций, а также пользоваться печатными или электронными копиями статьи в научных, образовательных и иных целях. Право на номер журнала как составное произведение принадлежит издателю.