Possible mechanisms of interdependent processing of multimodal sensory and spatial information in the CNS
DOI:
https://doi.org/10.33910/2687-1270-2023-4-1-18-42Keywords:
place cells, hippocampal formation, multimodal sensory information, connectome, synaptic plasticityAbstract
We performed an analysis of possible mechanisms of influence of multimodal sensory information on the activity of “place cells” and the generation of “odor – object – place” associations in the hippocampus, as well as the role of the hippocampal formation in the appearance of “place cells” in different areas of the cortex. The research was based on the readily available data that, in addition to the “what” and “where” information entering the hippocampus through the lateral and medial parts of the entorhinal cortex, respectively, various areas of the cortex influence hippocampal activity through the anterior, reuniens, and mediodorsal thalamic nuclei. The analyzed neural network interdependently processes multimodal sensory and spatial information. This network includes topographically connected areas of the cortex, hippocampal formation, basal ganglia, cerebellum, thalamic and other subcortical nuclei, thus forming a global connectome. This connectome consists of topographically organized connectomes, each of which processes the properties of sensory stimuli of a certain modality. It has been suggested that long-term dopamine-dependent plastic changes in the efficacy of synaptic transmission between neurons in the connectome may underlie dynamic reorganizations in the activity of “place cells” in the hippocampal formation and in the cortex providing adequate spatial navigation based on a diverse sensory environment. The consequences of the proposed mechanism are consistent with the experimental results known from the literature.
References
ЛИТЕРАТУРА
Силькис, И. Г. (2009) Участие трисинаптического гиппокампального пути в формировании нейронных отображений ассоциаций «объект–место» (аналитический обзор). Журнал высшей нервной деятельности им. И. П. Павлова, т. 59, № 6, с. 643–659.
Силькис, И. Г. (2011) Преимущества иерархического обобщения и хранения отображений ассоциаций «объект–место» в полях гиппокампа (Гипотеза). Журнал высшей нервной деятельности им. И. П. Павлова, т. 61, № 1, с. 5–23.
Силькис, И. Г. (2014) Механизмы взаимозависимого влияния префронтальной коры, гиппокампа и миндалины на функционирование базальных ганглиев и выбор поведения. Журнал высшей нервной деятельности им. И. П. Павлова, т. 64, № 1, с. 82–100. https://doi.org/10.7868/S0044467714010110
Силькис, И. Г. (2016) Вклад дофамина в функционирование гиппокампа при пространственном обучении (гипотетический механизм). Нейрохимия, т. 33, № 1, с. 42–55. https://doi.org/10.7868/S1027813316010131
Силькис, И. Г. (2021a) Влияние дофамина на взаимозависимое функционирование мозжечка, базальных ганглиев и новой коры (гипотетический механизм). Успехи физиологических наук, т. 52, № 1, с. 49–63. https://doi.org/10.31857/S0301179821010094
Силькис, И. Г. (2021b) Возможные механизмы взаимозависимого участия базальных ганглиев и мозжечка в функционировании двигательных и сенсорных систем. Интегративная физиология, т. 2, № 2, с. 135– 146. https://doi.org/10.33910/2687-1270-2021-2-2-135-146
Силькис, И. Г. (2021c) Участие ядер гипоталамуса в формировании ассоциаций «объект–место» на нейронах поля СА2 гиппокампа (гипотетический механизм). Журнал высшей нервной деятельности им. И. П. Павлова, т. 71, № 2, с. 147–163. https://doi.org/10.31857/S0044467721020106
Силькис, И. Г. (2022) Механизмы функционирования коннектома, включающего неокортекс, гиппокамп, базальные ганглии, мозжечок и таламус. Журнал высшей нервной деятельности им. И. П. Павлова. т. 72, № 1, с. 36–54. https://doi.org/10.31857/S0044467722010105
Aikath, D., Weible, A. P., Rowland, D. C., Kentros, C. G. (2014) Role of self-generated odor cues in contextual representation. Hippocampus, vol. 24, no. 8, pp. 1039–1051. https://doi.org/10.1002/hipo.22289
Alexander, G. M., Farris, S., Pirone, J. R. et al. (2016) Social and novel contexts modify hippocampal CA2 representations of space. Nature Communications, vol. 7, article 10300. https://doi.org/10.1038/ncomms10300
Ali, M., Cholvin, T., Muller, M. A. et al. (2017) Environmental enrichment enhances systems-level consolidation of a spatial memory after lesions of the ventral midline thalamus. Neurobiology of Learning and Memory, vol. 141, pp. 108–123. https://doi.org/10.1016/j.nlm.2017.03.021
Amaro, D., Ferreiro, D. N., Grothe, B., Pecka, M. (2021) Source identity shapes spatial preference in primary auditory cortex during active navigation. Current Biology, vol. 31, no. 17, pp. 3875–3883.e5. https://doi.org/10.1016/j.cub.2021.06.025
Aronov, D., Nevers, R., Tank, D. W. (2017) Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature, vol. 543, no. 7647, pp. 719–722. https://doi.org/10.1038/nature21692
Aqrabawi, A. J., Kim, J. C. (2018) Hippocampal projections to the anterior olfactory nucleus differentially convey spatiotemporal information during episodic odour memory. Nature Communications, vol. 9, no. 1, article 2735. https://doi.org/10.1038/s41467-018-05131-6
Aqrabawi, A. J., Kim, J. C. (2020) Olfactory memory representations are stored in the anterior olfactory nucleus. Nature Communications, vol. 11, no. 1, article 1246. https://doi.org/10.1038/s41467-020-15032-2
Basu, R., Gebauer, R., Herfurth, T. et al. (2021) The orbitofrontal cortex maps future navigational goals. Nature, vol. 599, no. 7885, pp. 449–452. https://doi.org/10.1038/s41586-021-04042-9
Baumann, O., Mattingley, J. B. (2014) Dissociable roles of the hippocampus and parietal cortex in processing of coordinate and categorical spatial information. Frontiers in Human Neuroscience, vol. 8, article 73. https://doi.org/10.3389/fnhum.2014.00073
Beneyto, M., Prieto, J. J. (2001) Connections of the auditory cortex with the claustrum and the endopiriform nucleus in the cat. Brain Research Bulletin, vol. 54, no. 5, pp. 485–498. https://doi.org/10.1016/s0361-9230(00)00454-8
Benoy, A., Dasgupta, A., Sajikumar, S. (2018) Hippocampal area CA2: An emerging modulatory gateway in the hippocampal circuit. Experimental Brain Research, vol. 236, no. 4, pp. 919–931. https://doi.org/10.1007/s00221-018-5187-5
Bhasin, G., Nair, I. R. (2022) Dynamic hippocampal CA2 responses to contextual spatial novelty. Frontiers in System Neurosciience, vol. 16. article 923911. https://doi.org/10.3389/fnsys.2022.923911
Bostan, A. C., Strick, P. L. (2018) The basal ganglia and the cerebellum: Nodes in an integrated network. Nature Review Neuroscience, vol. 19, no. 7, pp. 338–350. https://doi.org/10.1038/s41583-018-0002-7
Brennan, E. K., Jedrasiak-Cape, I., Kailasa, S. K. et al. (2021) Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex. eLife, vol. 10, article e62207. https://doi.org/10.7554/eLife.62207
Bucci, D. J., Robinson, S. (2014) Toward a conceptualization of retrohippocampal contributions to learning and memory. Neurobiology of Learning and Memory, vol. 116, pp. 197–207. https://doi.org/10.1016/j.nlm.2014.05.007
Bueno-Junior, L. S., Leite, J. P. (2018) Input convergence, synaptic plasticity and functional coupling across hippocampal-prefrontal-thalamic circuits. Frontiers in Neural Circuits, vol. 12. article 40. https://doi.org/10.3389/fncir.2018.00040
Bueno-Junior, L. S., Peixoto-Santos, J. E., Ruggiero, R. N. et al. (2018) Interaction between hippocampal-prefrontal plasticity and thalamic-prefrontal activity. Scientific Reports, vol. 8, no. 1, article 1382. https://doi.org/10.1038/s41598-018-19540-6
Burwell, R. D., Amaral, D. G. (1998) Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. Journal of Comparative Neurology, vol. 398, no. 2, pp. 179–205. https://doi.org/10.1002/(sici)1096-9861(19980824)398:2<179::aid-cne3>3.0.co;2-y
Burwell, R. D., Hafeman, D. M. (2003) Positional firing properties of postrhinal cortex neurons. Neuroscience, vol. 119, no. 2, pp. 577–588. https://doi.org/10.1016/s0306-4522(03)00160-x
Chan, C. C. H., Wong, A. W. K., Ting, K.-H. et al. (2012) Cross auditory-spatial learning in early-blind individuals. Human Brain Mapping, vol. 33, no. 11, pp. 2714–2727. https://doi.org/10.1002/hbm.21395
Chao, O. Y., Nikolaus, S., Yang, Y.-M., Huston, J. P. (2022) Neuronal circuitry for recognition memory of object and place in rodent models. Neuroscience and Biobehavioral Reviews, vol. 141, article 104855. https://doi.org/10.1016/j.neubiorev.2022.104855
Chersi, F., Burgess, N. (2015) The cognitive architecture of spatial navigation: Hippocampal and striatal contributions. Neuron, vol. 88, no. 1, pp. 64–77. https://doi.org/10.1016/j.neuron.2015.09.021
Chevaleyre, V., Siegelbaum, S. A. (2010) Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop. Neuron, vol. 66, no. 4, pp. 560–572. https://doi.org/10.1016/j.neuron.2010.04.013
Chia, Z., Augustine, G. J., Silberberg, G. (2020) Synaptic connectivity between the cortex and claustrum is organized into functional modules. Current Biology, vol. 30, no. 14, pp. 2777–2790.e4. https://doi.org/10.1016/j.cub.2020.05.031
Cholvin, T., Hok, V., Giorgi, L. et al. (2018) Ventral midline thalamus is necessary for hippocampal place field stability and cell firing modulation. Journal of Neuroscience, vol. 38, no. 1, pp. 158–172. https://doi.org/10.1523/JNEUROSCI.2039-17.2017
Collignon, O., Voss, P., Lassonde, M., Lepore, F. (2009) Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Experimental Brain Research, vol. 192, no. 3, pp. 343–358. https://doi.org/10.1007/s00221-008-1553-z
Cooper, B. G., Mizumori, S. J. (2001) Temporary inactivation of the retrosplenial cortex causes a transient reorganization of spatial coding in the hippocampus. Journal of Neuroscience, vol. 21, no. 11, pp. 3986–4001. https://doi.org/10.1523/JNEUROSCI.21-11-03986.2001
Czajkowski, R., Jayaprakash, B., Wiltgen, B. et al. (2014) Encoding and storage of spatial information in the retrosplenial cortex. Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 23, pp. 8661–8666. https://doi.org/10.1073/pnas.1313222111
Dahmani, L., Bohbot, V. D. (2015) Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies. Neurobiology of Learning and Memory, vol. 117, pp. 42–50. https://doi.org/10.1016/j.nlm.2014.07.002
Dahmani, L., Patel, R. M., Yang, Y. et al. (2018) An intrinsic association between olfactory identification and spatial memory in humans. Nature Communications, vol. 9, no. 1, article 4162. https://doi.org/10.1038/s41467-018-06569-4
Deshmukh, S. S., Johnson, J. L., Knierim, J. J. (2012) Perirhinal cortex represents nonspatial, but not spatial, information in rats foraging in the presence of objects: Comparison with lateral entorhinal cortex. Hippocampus, vol. 22, no. 10, pp. 2045–2058. https://doi.org/10.1002/hipo.22046
Ekstrom, A. D., Huffman, D. J., Starrett, M. (2017) Interacting networks of brain regions underlie human spatial navigation: A review and novel synthesis of the literature. Journal of Neurophysiology, vol. 118, no. 6, pp. 3328– 3344. https://doi.org/10.1152/jn.00531.2017
Esteves, I. M., Chang, H., Neumann, A. R. et al. (2021) Spatial information encoding across multiple neocortical regions depends on an intact hippocampus. Journal of Neuroscience, vol. 41, no. 2, pp. 307–319. https://doi.org/10.1523/JNEUROSCI.1788-20.2020
Fermin, A. S., Yoshida, T., Yoshimoto, J. et al. (2016) Model-based action planning involves cortico-cerebellar and basal ganglia networks. Scientific Reports, vol. 6, article 31378. https://doi.org/10.1038/srep31378
Fischer, L. F., Soto-Albors, R. M., Buck, F., Harnett, M. T. (2020) Representation of visual landmarks in retrosplenial cortex. eLife, vol. 9, article e51458. https://doi.org/10.7554/eLife.51458
Fischler-Ruiz, W., Clark, D. G., Joshi, N. R. et al. (2021) Olfactory landmarks and path integration converge to form a cognitive spatial map. Neuron, vol. 109, no. 24, pp. 4036–4049.e5. https://doi.org/10.1016/j.neuron.2021.09.055
Fournier, J., Saleem, A. B., Diamanti, E. M. et al. (2020) Mouse visual cortex is modulated by distance traveled and by theta oscillations. Current Biology, vol. 30, no. 19, pp. 3811–3817.e6. https://doi.org/10.1016/j.cub.2020.07.006
Frost, B. E., Martin, S. K., Cafalchio, M. et al. (2021) Anterior thalamic inputs are required for subiculum spatial coding, with associated consequences for hippocampal spatial memory. Journal of Neuroscience, vol. 41, no. 30, pp. 6511–6525. https://doi.org/10.1523/JNEUROSCI.2868-20.2021
Gener, T., Perez-Mendez, L., Sanchez-Vives, M. V. (2013) Tactile modulation of hippocampal place fields. Hippocampus, vol. 23, no. 12, pp. 1453–1462. https://doi.org/10.1002/hipo.22198
Giannetti, S., Molinari, M. (2002) Cerebellar input to the posterior parietal cortex in the rat. Brain Research Bulletin, vol. 58, no. 5, pp. 481–489. https://doi.org/10.1016/s0361-9230(02)00815-8
Griffin, A. L. (2021) The nucleus reuniens orchestrates prefrontal-hippocampal synchrony during spatial working memory. Neuroscience and Biobehavioral Reviews, vol. 128, pp. 415–420. https://doi.org/10.1016/j.neubiorev.2021.05.033
Hallock, H. L., Wang, A., Shaw, C. L., Griffin, A. L. (2013) Transient inactivation of the thalamic nucleus reuniens and rhomboid nucleus produces deficits of a working-memory dependent tactile-visual conditional discrimination task. Behavioral Neuroscience, vol. 127, no. 6, pp. 860–866. https://doi.org/10.1037/a0034653
Hitti, F. L., Siegelbaum, S. A. (2014) The hippocampal CA2 region is essential for social memory. Nature, vol. 508, no. 7494, pp. 88–92. https://doi.org/10.1038/nature13028
Huang, C.-C., Rolls, E. T., Hsu, C.-C. H. et al. (2021) Extensive cortical connectivity of the human hippocampal memory system: Beyond the “what” and “where” dual stream model. Cerebral Cortex, vol. 31, no. 10, pp. 4652–4669. https://doi.org/10.1093/cercor/bhab113
Jacob, P.-Y., Van Cauter, T., Poucet, B. et al. (2020) Medial entorhinal cortex lesions induce degradation of CA1 place cell firing stability when self-motion information is used. Brain and Neuroscience Advances, vol. 4, article 2398212820953004. [Online]. Available at: https://doi.org/10.1177/2398212820953004 (accessed 20.01.2023).
Jankowski, M. M., Islam, N., O’Mara, S. M. (2017) Dynamics of spontaneous local field potentials in the anterior claustrum of freely moving rats. Brain Research, vol. 1677, pp. 101–117. https://doi.org/10.1016/j.brainres.2017.09.021
Jankowski, M. M., O’Mara, S. M. (2015) Dynamics of place, boundary and object encoding in rat anterior claustrum. Frontiers in Behavioral Neuroscience, vol. 9, article 250. https://doi.org/10.3389/fnbeh.2015.00250
Jeffery, K. J. (2007) Integration of the sensory inputs to place cells: What, where, why, and how? Hippocampus, vol. 17, no. 9, pp. 775–785. https://doi.org/10.1002/hipo.20322
Joel, D., Weiner, I. (2000) The connections of the dopaminergic system with the striatum in rats and primates: An analysis with respect to the functional and compartmental organization of the striatum. Neuroscience, vol. 96, no. 3, pp. 451–474. https://doi.org/10.1016/s0306-4522(99)00575-8
Jorge, P. E., Phillips, J. B., Gonçalves, A. et al. (2014) Odours stimulate neuronal activity in the dorsolateral area of the hippocampal formation during path integration. Proceedings of the Royal Society B: Biological Sciences, vol. 281, no. 1783, article 20140025. https://doi.org/10.1098/rspb.2014.0025
Jung, D., Huh, Y., Cho, J. (2019) The ventral midline thalamus mediates hippocampal spatial information processes upon spatial cue changes. Journal of Neuroscience, vol. 39, no. 12, pp. 2276–2290. https://doi.org/10.1523/JNEUROSCI.2127-18.2019
Kaitz, S. S., Robertson, R. T. (1981) Thalamic connections with limbic cortex. II. Corticothalamic projections. Journal of Comparative Neurology, vol. 195, no. 3, pp. 527–545. https://doi.org/10.1002/cne.901950309
Kazarian, A. L., Hekimian, A. A., Harutiunian-Kozak, B. A. et al. (1995) Responses of cat’s dorsal hippocampal neurones to moving visual stimuli. Acta Neurobiologiae Experimentalis, vol. 55, no. 2, pp. 99–107. https://pubmed.ncbi.nlm.nih.gov/7660867
Keene, C. S., Bladon, J., McKenzie, S. et al. (2016) Complementary functional organization of neuronal activity patterns in the perirhinal, lateral entorhinal, and medial entorhinal cortices. Journal of Neuroscience, vol. 36, no. 13, pp. 3660–3675. https://doi.org/10.1523/JNEUROSCI.4368-15.2016
Kesner, R. P., Hunsaker, M. R., Ziegler, W. (2011) The role of the dorsal and ventral hippocampus in olfactory working memory. Neurobiology of Learning and Memory, vol. 96, no. 2, pp. 361–366. https://doi.org/10.1016/j.nlm.2011.06.011
Kim, J., Matney, C. J., Roth, R. H., Brown, S. P. (2016) Synaptic organization of the neuronal circuits of the claustrum. Journal of Neuroscience, vol. 36, no. 3, pp. 773–784. https://doi.org/10.1523/JNEUROSCI.3643-15.2016
Kitanishi, T., Matsuo, N. (2017) Organization of the claustrum-to-entorhinal cortical connection in mice. Journal of Neuroscience, vol. 37, no. 2, pp. 269–280. https://doi.org/10.1523/JNEUROSCI.1360-16.2016
Knierim, J. J., Lee, I., Hargreaves, E. L. (2006) Hippocampal place cells: Parallel input streams, subregional processing, and implications for episodic memory. Hippocampus, vol. 16, no. 9, pp. 755–764. https://doi.org/10.1002/hipo.20203
Kohara, K., Pignatelli, M., Rivest, A. J. et al. (2014) Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nature Neuroscience, vol. 17, no. 2, pp. 269–279. https://doi.org/10.1038/nn.3614
Lehr, A. B., Kumar, A., Tetzlaff, C. et al. (2021) CA2 beyond social memory: Evidence for a fundamental role in hippocampal information processing. Neuroscience and Biobehavioral Reviews, vol. 126, pp. 398–412. https://doi.org/10.1016/j.neubiorev.2021.03.020
Levinson, M., Kolenda, J. P., Alexandrou, G. J. et al. (2020) Context-dependent odor learning requires the anterior olfactory nucleus. Behavioral Neuroscience, vol. 134, no. 4, pp. 332–343. https://doi.org/10.1037/bne0000371
Long, X., Zhang, S.-J. (2021) A novel somatosensory spatial navigation system outside the hippocampal formation. Cell Research, vol. 31, no. 6, pp. 649–663. https://doi.org/10.1038/s41422-020-00448-8
Loureiro, M., Cholvin, T., Lopez, J. et al. (2012) The ventral midline thalamus (reuniens and rhomboid nuclei) contributes to the persistence of spatial memory in rats. Journal of Neuroscience, vol. 32, no. 29, pp. 9947–9959. https://doi.org/10.1523/JNEUROSCI.0410-12.2012
Ma, Q., Rolls, E. T., Huang, C.-C. et al. (2022) Extensive cortical functional connectivity of the human hippocampal memory system. Cortex, vol. 147, pp. 83–101. https://doi.org/10.1016/j.cortex.2021.11.014
Mankin, E. A., Diehl, G. W., Sparks, F. T. et al. (2015) Hippocampal CA2 activity patterns change over time to a larger extent than between spatial contexts. Neuron, vol. 85, no. 1, pp. 190–201. https://doi.org/10.1016/j.neuron.2014.12.001
Mathiasen, M. L., Nelson, A. J. D., Amin, E. et al. (2021) A direct comparison of afferents to the rat anterior thalamic nuclei and nucleus reuniens: Overlapping but different. eNeuro, vol. 8, no. 5. [Online]. Available at: https://doi.org/10.1523/ENEURO.0103-20.2021 (accessed 20.01.2023).
Mathiasen, M. L., O’Mara, S. M., Aggleton, J. P. (2020) The anterior thalamic nuclei and nucleus reuniens: So similar but so different. Neuroscience and Biobehavioral Reviews, vol. 119, pp. 268–280. https://doi.org/10.1016/j.neubiorev.2020.10.006
Middleton, S. J., McHugh, T. J. (2020) CA2: A highly connected intrahippocampal relay. Annual Review of Neuroscience, vol. 43, pp. 55–72. https://doi.org/10.1146/annurev-neuro-080719-100343
Moita, M. A. P., Rosis, S., Zhou, Y. et al. (2003) Hippocampal place cells acquire location-specific responses to the conditioned stimulus during auditory fear conditioning. Neuron, vol. 37, no. 3, pp. 485–497. https://doi.org/10.1016/s0896-6273(03)00033-3
Naber, P. A., Lopes da Silva, F. H., Witter, M. P. (2001) Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum. Hippocampus, vol. 11, no. 2, pp. 99–104. https://doi.org/10.1002/hipo.1028
Nelken, I. (2004) Processing of complex stimuli and natural scenes in the auditory cortex. Current Opinion in Neurobiology, vol. 14, no. 4, pp. 474–480. https://doi.org/10.1016/j.conb.2004.06.005
Nelken, I., Fishbach, A., Las, L. et al. (2003) Primary auditory cortex of cats: Feature detection or something else? Biological Cybernetics, vol. 89, no. 5, pp. 397–406. https://doi.org/10.1007/s00422-003-0445-3
Nelson, A. J. D. (2021) The anterior thalamic nuclei and cognition: A role beyond space? Neuroscience and Biobehavioral Reviews, vol. 126, pp. 1–11. https://doi.org/10.1016/j.neubiorev.2021.02.047
Nitz, D. (2009) Parietal cortex, navigation, and the construction of arbitrary reference frames for spatial information. Neurobiology of Learning and Memory, vol. 91, no. 2, pp. 179–185. https://doi.org/10.1016/j.nlm.2008.08.007
O’Mara, S. M., Aggleton, J. P. (2019) Space and memory (far) beyond the hippocampus: Many subcortical structures also support cognitive mapping and mnemonic processing. Frontiers in Neural Circuits, vol. 13, article 52. https://doi.org/10.3389/fncir.2019.00052
Persson, B. M., Ambrozova, V., Duncan, S. et al. (2022) Lateral entorhinal cortex lesions impair odor-context associative memory in male rats. Journal of Neuroscience Research, vol. 100, no. 4, pp. 1030–1046. https://doi.org/10.1002/jnr.25027
Poucet, B., Lenck-Santini, P.-P., Paz-Villagrán, V., Save, E. (2003) Place cells, neocortex and spatial navigation: A short review. Journal of Physiology Paris, vol. 97, no. 4-6, pp. 537–546. https://doi.org/10.1016/j.jphysparis.2004.01.011
Poucet, B., Save, E., Lenck-Santini, P.-P. (2000) Sensory and memory properties of hippocampal place cells. Reviews in the Neurosciences, vol. 11, no. 2-3, pp. 95–111. https://doi.org/10.1515/revneuro.2000.11.2-3.95
Powell, A., Connelly, W. M., Vasalauskaite, A. et al. (2020) Stable encoding of visual cues in the mouse retrosplenial cortex. Cerebral Cortex, vol. 30, no. 8, pp. 4424–4437. https://doi.org/10.1093/cercor/bhaa030
Radvansky, B. A., Dombeck, D. A. (2018) An olfactory virtual reality system for mice. Nature Communications, vol. 9, no. 1, article 839. http://doi.org/10.1038/s41467-018-03262-4
Radvansky, B. A., Oh, J. Y., Climer, J. R., Dombeck, D. A. (2021) Behavior determines the hippocampal spatial mapping of a multisensory environment. Cell Reports, vol. 36, no. 5, article 109444. https://doi.org/10.1016/j.celrep.2021.109444
Raithel, C. U., Gottfried, J. A. (2021) What are grid-like responses doing in the orbitofrontal cortex? Behavioral Neuroscience, vol. 135, no. 2, pp. 218–225. https://doi.org/10.1037/bne0000453
Ravassard, P., Kees, A., Willers, B. et al. (2013) Multisensory control of hippocampal spatiotemporal selectivity. Science, vol. 340, no. 6138, pp. 1342–1346. https://doi.org/10.1126/science.1232655
Rizzello, E., Martin, S. K., Rouine, J. et al. (2022) Place cells in the claustrum remap under NMDA receptor control. European Journal of Neuroscience, vol. 56, no. 2, pp. 3825–3838. https://doi.org/10.1111/ejn.15726
Robertson, R. T., Kaitz, S. S. (1981) Thalamic connections with limbic cortex. I. Thalamocortical projections. Journal of Comparative Neurology, vol. 195, no. 3, pp. 501–525. https://doi.org/10.1002/cne.901950308
Rogers, J. L., Kesner, R. P. (2006) Lesions of the dorsal hippocampus or parietal cortex differentially affect spatial information processing. Behavioral Neuroscience, vol. 120, no. 4, pp. 852–860. https://doi.org/10.1037/0735-7044.120.4.852
Rolls, E. T., Deco, G., Huang, C.-C., Feng, J. (2022a) The human orbitofrontal cortex, vmPFC, and anterior cingulate cortex effective connectome: Emotion, memory, and action. Cerebral Cortex, vol. 33, no. 2, pp. 330–356. https://doi.org/10.1093/cercor/bhac070
Rolls, E. T., Wirth, S., Deco, G. et al. (2022b) The human posterior cingulate, retrosplenial, and medial parietal cortex effective connectome, and implications for memory and navigation. Human Brain Mapping, vol. 44, no. 2, pp. 629–655. https://doi.org/10.1002/hbm.26089
Rondi-Reig, L., Paradis, A.-L., Fallahnezhad, M. (2022) A Liaison brought to light: Cerebellum-hippocampus, partners for spatial cognition. Cerebellum, vol. 21, no. 5, pp. 826–837. https://doi.org/10.1007/s12311-022-01422-3
Rondi-Reig, L., Paradis, A.-L., Lefort, J. M. et al. (2014) How the cerebellum may monitor sensory information for spatial representation. Frontiers in System Neuroscience, vol. 8, article 205. https://doi.org/10.3389/fnsys.2014.00205
Rowland, D. C., Weible, A. P., Wickersham, I. R. et al. (2013) Transgenically targeted rabies virus demonstrates a major monosynaptic projection from hippocampal area CA2 to medial entorhinal layer II neurons. Journal of Neuroscience, vol. 33, no. 37, pp. 14889–14898. https://doi.org/10.1523/JNEUROSCI.1046-13.2013
Sakai, M., Chimoto, S., Qin, L., Sato, Y. (2009) Differential representation of spectral and temporal information by primary auditory cortex neurons in awake cats: Relevance to auditory scene analysis. Brain Research, vol. 1265, pp. 80–92. https://doi.org/10.1016/j.brainres.2009.01.064
Saleem, A. B., Diamanti, E. M., Fournier, J. et al. (2018) Coherent encoding of subjective spatial position in visual cortex and hippocampus. Nature, vol. 562, no. 7725, pp. 124–127. https://doi.org/10.1038/s41586-018-0516-1
Sauer, J.-F., Folschweiller, S., Bartos, M. (2022) Topographically organized representation of space and context in the medial prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, vol. 119, no. 6, article e2117300119. https://doi.org/10.1073/pnas.2117300119
Save, E., Paz-Villagran, V., Alexinsky, T., Poucet, B. (2005) Functional interaction between the associative parietal cortex and hippocampal place cell firing in the rat. European Journal of Neuroscience, vol. 21, no. 2, pp. 522–530. https://doi.org/10.1111/j.1460-9568.2005.03882.x
Smith, J. B., Alloway, K. D. (2010) Functional specificity of claustrum connections in the rat: Interhemispheric communication between specific parts of motor cortex. Journal of Neuroscience, vol. 30, no. 50, pp. 16832–16844. https://doi.org/10.1523/JNEUROSCI.4438-10.2010
Srinivas, K. V., Buss, E. W., Sun, Q. et al. (2017) The dendrites of CA2 and CA1 pyramidal neurons differentially regulate information flow in the cortico-hippocampal circuit. Journal of Neurosciences, vol. 37, no. 12, pp. 3276–3293. https://doi.org/10.1523/JNEUROSCI.2219-16.2017
Stevenson, E. L., Caldwell, H. K. (2014) Lesions to the CA2 region of the hippocampus impair social memory in mice. European Journal of Neuroscience, vol. 40, no. 9, pp. 3294–3301. https://doi.org/10.1111/ejn.12689
Tanné-Gariépy, J., Boussaoud, D., Rouiller, E. M. (2002) Projections of the claustrum to the primary motor, premotor, and prefrontal cortices in the macaque monkey. Journal of Comparative Neurology, vol. 454, no. 2, pp. 140–157. https://doi.org/10.1002/cne.10425
Taxidis, J., Pnevmatikakis, E. A., Dorian, C. C. et al. (2020) Differential emergence and stability of sensory and temporal representations in context-specific hippocampal sequences. Neuron, vol. 108, no. 5, pp. 984–998.e9. https://doi.org/10.1016/j.neuron.2020.08.028
Terem, A., Gonzales, B. J., Peretz-Rivlin, N. et al. (2020) Claustral neurons projecting to frontal cortex mediate contextual association of reward. Current Biology, vol. 30, no. 18, pp. 3522–3532.e6. https://doi.org/10.1016/j.cub.2020.06.064
Tomás Pereira, I., Agster, K. L, Burwell, R. D. (2016) Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. I. afferents. Hippocampus, vol. 26, no. 9, pp. 1189–1212. https://doi.org/10.1002/hipo.22603
Tsanov, M., O’Mara, S. M. (2015) Decoding signal processing in thalamo-hippocampal circuitry: Implications for theories of memory and spatial processing. Brain Research, vol. 1621, pp. 368–379. https://doi.org/10.1016/j.brainres.2014.12.003
Van Cauter, T., Poucet, B., Save, E. (2008) Unstable CA1 place cell representation in rats with entorhinal cortex lesions. European Journal of Neuroscience, vol. 27, no. 8, pp. 1933–1946. https://doi.org/10.1111/j.1460-9568.2008.06158.x
Wang, Q., Ng, L., Harris, J. A. et al. (2017) Organization of the connections between claustrum and cortex in the mouse. Journal of Comparative Neurology, vol. 525, no. 6, pp. 1317–1346. https://doi.org/10.1002/cne.24047
Wang, Q., Yang, S.-T., Li, B.-M. (2015) Neuronal representation of audio-place associations in the medial prefrontal cortex of rats. Molecular Brain, vol. 8, no. 1, article 56. https://doi.org/10.1186/s13041-015-0147-5
Watson, T. C., Obiang, P., Torres-Herraez, A. et al. (2019) Anatomical and physiological foundations of cerebello-hippocampal interaction. eLife, vol. 8, article e41896. https://doi.org/10.7554/eLife.41896
Wilson, D. I. G., Watanabe, S., Milner, H., Ainge, J. A. (2013) Lateral entorhinal cortex is necessary for associative but not nonassociative recognition memory. Hippocampus, vol. 23, no. 12, pp. 1280–1290. https://doi.org/10.1002/hipo.22165
Wirtshafter, H. S., Disterhoft, J. F. (2022) Place cells are nonrandomly clustered by field location in CA1 hippocampus. Hippocampus, vol. 33, no. 2, pp. 65–84. https://doi.org/10.1002/hipo.23489
Witter, M. P., Room, P., Groenewegen, H. J., Lohman, A. H. M. (1988) Reciprocal connections of the insular and piriform claustrum with limbic cortex: An anatomical study in the cat. Neuroscience, vol. 24, no. 2, pp. 519–539. https://doi.org/10.1016/0306-4522(88)90347-8
Zhang, B., Naya, Y. (2020) Medial prefrontal cortex represents the object-based cognitive map when remembering an egocentric target location. Cerebral Cortex, vol. 30, no. 10, pp. 5356–5371. https://doi.org/10.1093/cercor/bhaa117
REFERENCES
Aikath, D., Weible, A. P., Rowland, D. C., Kentros, C. G. (2014) Role of self-generated odor cues in contextual representation. Hippocampus, vol. 24, no. 8, pp. 1039–1051. https://doi.org/10.1002/hipo.22289 (In English)
Alexander, G. M., Farris, S., Pirone, J. R. et al. (2016) Social and novel contexts modify hippocampal CA2 representations of space. Nature Communications, vol. 7, article 10300. https://doi.org/10.1038/ncomms10300 (In English)
Ali, M., Cholvin, T., Muller, M. A. et al. (2017) Environmental enrichment enhances systems-level consolidation of a spatial memory after lesions of the ventral midline thalamus. Neurobiology of Learning and Memory, vol. 141, pp. 108–123. https://doi.org/10.1016/j.nlm.2017.03.021 (In English)
Amaro, D., Ferreiro, D. N., Grothe, B., Pecka, M. (2021) Source identity shapes spatial preference in primary auditory cortex during active navigation. Current Biology, vol. 31, no. 17, pp. 3875–3883.e5. https://doi.org/10.1016/j.cub.2021.06.025 (In English)
Aronov, D., Nevers, R., Tank, D. W. (2017) Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature, vol. 543, no. 7647, pp. 719–722. https://doi.org/10.1038/nature21692 (In English)
Aqrabawi, A. J., Kim, J. C. (2018) Hippocampal projections to the anterior olfactory nucleus differentially convey spatiotemporal information during episodic odour memory. Nature Communications, vol. 9, no. 1, article 2735. https://doi.org/10.1038/s41467-018-05131-6 (In English)
Aqrabawi, A. J., Kim, J. C. (2020) Olfactory memory representations are stored in the anterior olfactory nucleus. Nature Communications, vol. 11, no. 1, article 1246. https://doi.org/10.1038/s41467-020-15032-2 (In English)
Basu, R., Gebauer, R., Herfurth, T. et al. (2021) The orbitofrontal cortex maps future navigational goals. Nature, vol. 599, no. 7885, pp. 449–452. https://doi.org/10.1038/s41586-021-04042-9 (In English)
Baumann, O., Mattingley, J. B. (2014) Dissociable roles of the hippocampus and parietal cortex in processing of coordinate and categorical spatial information. Frontiers in Human Neuroscience, vol. 8, article 73. https://doi.org/10.3389/fnhum.2014.00073 (In English)
Beneyto, M., Prieto, J. J. (2001) Connections of the auditory cortex with the claustrum and the endopiriform nucleus in the cat. Brain Research Bulletin, vol. 54, no. 5, pp. 485–498. https://doi.org/10.1016/s0361-9230(00)00454-8 (In English)
Benoy, A., Dasgupta, A., Sajikumar, S. (2018) Hippocampal area CA2: An emerging modulatory gateway in the hippocampal circuit. Experimental Brain Research, vol. 236, no. 4, pp. 919–931. https://doi.org/10.1007/s00221-018-5187-5 (In English)
Bhasin, G., Nair, I. R. (2022) Dynamic hippocampal CA2 responses to contextual spatial novelty. Frontiers in System Neurosciience, vol. 16. article 923911. https://doi.org/10.3389/fnsys.2022.923911 (In English)
Bostan, A. C., Strick, P. L. (2018) The basal ganglia and the cerebellum: Nodes in an integrated network. Nature Review Neuroscience, vol. 19, no. 7, pp. 338–350. https://doi.org/10.1038/s41583-018-0002-7 (In English)
Brennan, E. K., Jedrasiak-Cape, I., Kailasa, S. K. et al. (2021) Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex. Elife, vol. 10, article e62207. https://doi.org/10.7554/eLife.62207 (In English)
Bucci, D. J., Robinson, S. (2014) Toward a conceptualization of retrohippocampal contributions to learning and memory. Neurobiology of Learning and Memory, vol. 116, pp. 197–207. https://doi.org/10.1016/j.nlm.2014.05.007 (In English)
Bueno-Junior, L. S., Leite, J. P. (2018) Input convergence, synaptic plasticity and functional coupling across hippocampal-prefrontal-thalamic circuits. Frontiers in Neural Circuits, vol. 12. article 40. https://doi.org/10.3389/fncir.2018.00040 (In English)
Bueno-Junior, L. S., Peixoto-Santos, J. E., Ruggiero, R. N. et al. (2018) Interaction between hippocampal-prefrontal plasticity and thalamic-prefrontal activity. Scientific Reports, vol. 8, no. 1, article 1382. https://doi.org/10.1038/s41598-018-19540-6 (In English)
Burwell, R. D., Amaral, D. G. (1998) Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. Journal of Comparative Neurology, vol. 398, no. 2, pp. 179–205. https://doi.org/10.1002/(sici)1096-9861(19980824)398:2<179::aid-cne3>3.0.co;2-y (In English)
Burwell, R. D., Hafeman, D. M. (2003) Positional firing properties of postrhinal cortex neurons. Neuroscience, vol. 119, no. 2, pp. 577–588. https://doi.org/10.1016/s0306-4522(03)00160-x (In English)
Chan, C. C. H., Wong, A. W. K., Ting, K.-H. et al. (2012) Cross auditory-spatial learning in early-blind individuals. Human Brain Mapping, vol. 33, no. 11, pp. 2714–2727. https://doi.org/10.1002/hbm.21395 (In English)
Chao, O. Y., Nikolaus, S., Yang, Y. M., Huston, J. P. (2022) Neuronal circuitry for recognition memory of object and place in rodent models. Neuroscience and Biobehavioral Reviews, vol. 141, article 104855. https://doi.org/10.1016/j.neubiorev.2022.104855 (In English)
Chersi, F., Burgess, N. (2015) The cognitive architecture of spatial navigation: Hippocampal and striatal contributions. Neuron, vol. 88, no. 1, pp. 64–77. https://doi.org/10.1016/j.neuron.2015.09.021 (In English)
Chevaleyre, V., Siegelbaum, S. A. (2010) Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop. Neuron, vol. 66, no. 4, pp. 560–572. https://doi.org/10.1016/j.neuron.2010.04.013 (In English)
Chia, Z., Augustine, G. J., Silberberg, G. (2020) Synaptic connectivity between the cortex and claustrum is organized into functional modules. Current Biology, vol. 30, no. 14, pp. 2777–2790.e4. https://doi.org/10.1016/j.cub.2020.05.031 (In English)
Cholvin, T., Hok, V., Giorgi, L. et al. (2018) Ventral midline thalamus is necessary for hippocampal place field stability and cell firing modulation. Journal of Neuroscience, vol. 38, no. 1, pp. 158–172. https://doi.org/10.1523/JNEUROSCI.2039-17.2017 (In English)
Collignon, O., Voss, P., Lassonde, M., Lepore, F. (2009) Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Experimental Brain Research, vol. 192, no. 3, pp. 343–358. https://doi.org/10.1007/s00221-008-1553-z (In English)
Cooper, B. G., Mizumori, S. J. (2001) Temporary inactivation of the retrosplenial cortex causes a transient reorganization of spatial coding in the hippocampus. Journal of Neuroscience, vol. 21, no. 11, pp. 3986–4001. https://doi.org/10.1523/JNEUROSCI.21-11-03986.2001 (In English)
Czajkowski, R., Jayaprakash, B., Wiltgen, B. et al. (2014) Encoding and storage of spatial information in the retrosplenial cortex. Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 23, pp. 8661–8666. https://doi.org/10.1073/pnas.1313222111 (In English)
Dahmani, L., Bohbot, V. D. (2015) Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies. Neurobiology of Learning and Memory, vol. 117, pp. 42–50. https://doi.org/10.1016/j.nlm.2014.07.002 (In English)
Dahmani, L., Patel, R. M., Yang, Y. et al. (2018) An intrinsic association between olfactory identification and spatial memory in humans. Nature Communications, vol. 9, no. 1, article 4162. https://doi.org/10.1038/s41467-018-06569-4 (In English)
Deshmukh, S. S., Johnson, J. L., Knierim, J. J. (2012) Perirhinal cortex represents nonspatial, but not spatial, information in rats foraging in the presence of objects: Comparison with lateral entorhinal cortex. Hippocampus, vol. 22, no. 10, pp. 2045–2058. https://doi.org/10.1002/hipo.22046 (In English)
Ekstrom, A. D., Huffman, D. J., Starrett, M. (2017) Interacting networks of brain regions underlie human spatial navigation: A review and novel synthesis of the literature. Journal of Neurophysiology, vol. 118, no. 6, pp. 3328–3344. https://doi.org/10.1152/jn.00531.2017 (In English)
Esteves, I. M., Chang, H., Neumann, A. R. et al. (2021) Spatial information encoding across multiple neocortical regions depends on an intact hippocampus. Journal of Neuroscience, vol. 41, no. 2, pp. 307–319. https://doi.org/10.1523/JNEUROSCI.1788-20.2020 (In English)
Fermin, A. S., Yoshida, T., Yoshimoto, J. et al. (2016) Model-based action planning involves cortico-cerebellar and basal ganglia networks. Scientific Reports, vol. 6, article 31378. https://doi.org/10.1038/srep31378 (In English)
Fischer, L. F., Mojica Soto-Albors, R., Buck, F., Harnett, M. T. (2020) Representation of visual landmarks in retrosplenial cortex. eLife, vol. 9, article e51458. https://doi.org/10.7554/eLife.51458 (In English)
Fischler-Ruiz, W., Clark, D. G., Joshi, N. R. et al. (2021) Olfactory landmarks and path integration converge to form a cognitive spatial map. Neuron, vol. 109, no. 24, pp. 4036–4049.e5. https://doi.org/10.1016/j.neuron.2021.09.055 (In English)
Fournier, J., Saleem, A. B., Diamanti, E. M. et al. (2020) Mouse visual cortex is modulated by distance traveled and by theta oscillations. Current Biology, vol. 30, no. 19, pp. 3811–3817.e6. https://doi.org/10.1016/j.cub.2020.07.006 (In English)
Frost, B. E., Martin, S. K., Cafalchio, M. et al. (2021) Anterior thalamic inputs are required for subiculum spatial coding, with associated consequences for hippocampal spatial memory. Journal of Neuroscience, vol. 41, no. 30, pp. 6511–6525. https://doi.org/10.1523/JNEUROSCI.2868-20.2021 (In English)
Gener, T., Perez-Mendez, L., Sanchez-Vives, M. V. (2013) Tactile modulation of hippocampal place fields. Hippocampus, vol. 23, no. 12, pp. 1453–1462. https://doi.org/10.1002/hipo.22198 (In English)
Giannetti, S., Molinari, M. (2002) Cerebellar input to the posterior parietal cortex in the rat. Brain Research Bulletin, vol. 58, no. 5, pp. 481–489. https://doi.org/10.1016/s0361-9230(02)00815-8 (In English)
Griffin, A. L. (2021) The nucleus reuniens orchestrates prefrontal-hippocampal synchrony during spatial working memory. Neuroscience and Biobehavioral Reviews, vol. 128, pp. 415–420. https://doi.org/10.1016/j.neubiorev.2021.05.033 (In English)
Hallock, H. L., Wang, A., Shaw, C. L., Griffin, A. L. (2013) Transient inactivation of the thalamic nucleus reuniens and rhomboid nucleus produces deficits of a working-memory dependent tactile-visual conditional discrimination task. Behavioral Neuroscience, vol. 127, no. 6, pp. 860–866. https://doi.org/10.1037/a0034653 (In English)
Hitti, F. L., Siegelbaum, S. A. (2014) The hippocampal CA2 region is essential for social memory. Nature, vol. 508, no. 7494, pp. 88–92. https://doi.org/10.1038/nature13028 (In English)
Huang, C.-C., Rolls, E. T., Hsu, C.-C. H. et al. (2021) Extensive cortical connectivity of the human hippocampal memory system: Beyond the “what” and “where” dual stream model. Cerebral Cortex, vol. 31, no. 10, pp. 4652– 4669. https://doi.org/10.1093/cercor/bhab113 (In English)
Jacob, P.-Y., Van Cauter, T., Poucet, B. et al. (2020) Medial entorhinal cortex lesions induce degradation of CA1 place cell firing stability when self-motion information is used. Brain and Neuroscience Advances, vol. 4, article 2398212820953004. [Online]. Available at: https://doi.org/10.1177/2398212820953004 (accessed 20.01.2023). (In English)
Jankowski, M. M., Islam, N., O’Mara, S. M. (2017) Dynamics of spontaneous local field potentials in the anterior claustrum of freely moving rats. Brain Research, vol. 1677, pp. 101–117. https://doi.org/10.1016/j.brainres.2017.09.021 (In English)
Jankowski, M. M., O’Mara, S. M. (2015) Dynamics of place, boundary and object encoding in rat anterior claustrum. Frontiers in Behavioral Neuroscience, vol. 9, article 250. https://doi.org/10.3389/fnbeh.2015.00250 (In English)
Jeffery, K. J. (2007) Integration of the sensory inputs to place cells: What, where, why, and how? Hippocampus, vol. 17, no. 9, pp. 775–785. https://doi.org/10.1002/hipo.20322 (In English)
Joel, D., Weiner, I. (2000) The connections of the dopaminergic system with the striatum in rats and primates: An analysis with respect to the functional and compartmental organization of the striatum. Neuroscience, vol. 96, no. 3, pp. 451–474. https://doi.org/10.1016/s0306-4522(99)00575-8 (In English)
Jorge, P. E., Phillips, J. B., Gonçalves, A. et al. (2014) Odours stimulate neuronal activity in the dorsolateral area of the hippocampal formation during path integration. Proceedings of the Royal Society B: Biological Sciences, vol. 281, no. 1783, article 20140025. https://doi.org/10.1098/rspb.2014.0025 (In English)
Jung, D., Huh, Y., Cho, J. (2019) The ventral midline thalamus mediates hippocampal spatial information processes upon spatial cue changes. Journal of Neuroscience, vol. 39, no. 12, pp. 2276–2290. https://doi.org/10.1523/JNEUROSCI.2127-18.2019 (In English)
Kaitz, S. S., Robertson, R. T. (1981) Thalamic connections with limbic cortex. II. Corticothalamic projections. Journal of Comparative Neurology, vol. 195, no. 3, pp. 527–545. https://doi.org/10.1002/cne.901950309 (In English)
Kazarian, A. L., Hekimian, A. A., Harutiunian-Kozak, B. A. et al. (1995) Responses of cat’s dorsal hippocampal neurones to moving visual stimuli. Acta Neurobiologiae Experimentalis, vol. 55, no. 2, pp. 99–107. https://pubmed.ncbi.nlm.nih.gov/7660867 (In English)
Kesner, R. P., Hunsaker, M. R., Ziegler, W. (2011) The role of the dorsal and ventral hippocampus in olfactory working memory. Neurobiology of Learning and Memory, vol. 96, no. 2, pp. 361–366. https://doi.org/10.1016/j.nlm.2011.06.011 (In English)
Kim, J., Matney, C. J., Roth, R. H., Brown, S. P. (2016) Synaptic organization of the neuronal circuits of the claustrum. Journal of Neuroscience, vol. 36, no. 3, pp. 773–784. https://doi.org/10.1523/JNEUROSCI.3643-15.2016 (In English)
Kitanishi, T., Matsuo, N. (2017) Organization of the claustrum-to-entorhinal cortical connection in mice. Journal of Neuroscience, vol. 37, no. 2, pp. 269–280. https://doi.org/10.1523/JNEUROSCI.1360-16.2016 (In English)
Keene, C. S., Bladon, J., McKenzie, S. et al. (2016) Complementary functional organization of neuronal activity patterns in the perirhinal, lateral entorhinal, and medial entorhinal cortices. Journal of Neuroscience, vol. 36, no. 13, pp. 3660–3675. https://doi.org/10.1523/JNEUROSCI.4368-15.2016 (In English)
Knierim, J. J., Lee, I., Hargreaves, E. L. (2006) Hippocampal place cells: Parallel input streams, subregional processing, and implications for episodic memory. Hippocampus, vol. 16, no. 9, pp. 755–764. https://doi.org/10.1002/hipo.20203 (In English)
Kohara, K., Pignatelli, M., Rivest, A. J. et al. (2014) Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nature Neuroscience, vol. 17, no. 2, pp. 269–279. https://doi.org/10.1038/nn.3614 (In English)
Lehr, A. B., Kumar, A., Tetzlaff, C. et al. (2021) CA2 beyond social memory: Evidence for a fundamental role in hippocampal information processing. Neuroscience and Biobehavioral Reviews, vol. 126, pp. 398–412. https://doi.org/10.1016/j.neubiorev.2021.03.020 (In English)
Levinson, M., Kolenda, J. P., Alexandrou, G. J. et al. (2020) Context-dependent odor learning requires the anterior olfactory nucleus. Behavioral Neuroscience, vol. 134, no. 4, pp. 332–343. https://doi.org/10.1037/bne0000371 (In English)
Long, X., Zhang, S.-J. (2021) A novel somatosensory spatial navigation system outside the hippocampal formation. Cell Research, vol. 31, no. 6, pp. 649–663. https://doi.org/10.1038/s41422-020-00448-8 (In English)
Loureiro, M., Cholvin, T., Lopez, J. et al. (2012) The ventral midline thalamus (reuniens and rhomboid nuclei) contributes to the persistence of spatial memory in rats. Journal of Neuroscience, vol. 32, no. 29, pp. 9947–9959. https://doi.org/10.1523/JNEUROSCI.0410-12.2012 (In English)
Ma, Q., Rolls, E. T., Huang, C. C. et al. (2022) Extensive cortical functional connectivity of the human hippocampal memory system. Cortex, vol. 147, pp. 83–101. https://doi.org/10.1016/j.cortex.2021.11.014 (In English)
Mankin, E. A., Diehl, G. W., Sparks, F. T. et al. (2015) Hippocampal CA2 activity patterns change over time to a larger extent than between spatial contexts. Neuron, vol. 85, no. 1, pp. 190–201. https://doi.org/10.1016/j.neuron.2014.12.001 (In English)
Mathiasen, M. L., Nelson, A. J. D., Amin, E. et al. (2021) A direct comparison of afferents to the rat anterior thalamic nuclei and nucleus reuniens: Overlapping but different. eNeuro, vol. 8, no. 5. [Online]. Available at: https://doi.org/10.1523/ENEURO.0103-20.2021 (accessed 20.01.2023). (In English)
Mathiasen, M. L., O’Mara, S. M., Aggleton, J. P. (2020) The anterior thalamic nuclei and nucleus reuniens: So similar but so different. Neuroscience and Biobehavioral Reviews, vol. 119, pp. 268–280. https://doi.org/10.1016/j.neubiorev.2020.10.006 (In English)
Middleton, S. J., McHugh, T. J. (2020) CA2: A highly connected intrahippocampal relay. Annual Review of Neuroscience, vol. 43, pp. 55–72. https://doi.org/10.1146/annurev-neuro-080719-100343 (In English)
Moita, M. A. P., Rosis, S., Zhou, Y. et al. (2003) Hippocampal place cells acquire location-specific responses to the conditioned stimulus during auditory fear conditioning. Neuron, vol. 37, no. 3, pp. 485–497. https://doi.org/10.1016/s0896-6273(03)00033-3 (In English)
Naber, P. A., Lopes da Silva, F. H., Witter, M. P. (2001) Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum. Hippocampus, vol. 11, no. 2, pp. 99–104. https://doi.org/10.1002/hipo.1028 (In English)
Nelken, I. (2004) Processing of complex stimuli and natural scenes in the auditory cortex. Current Opinion in Neurobiology, vol. 14, no. 4, pp. 474–480. https://doi.org/10.1016/j.conb.2004.06.005 (In English)
Nelken, I., Fishbach, A., Las, L. et al. (2003) Primary auditory cortex of cats: Feature detection or something else? Biological Cybernetics, vol. 89, no. 5, pp. 397–406. https://doi.org/10.1007/s00422-003-0445-3 (In English)
Nelson, A. J. D. (2021) The anterior thalamic nuclei and cognition: A role beyond space? Neuroscience and Biobehavioral Reviews, vol. 126, pp. 1–11. https://doi.org/10.1016/j.neubiorev.2021.02.047 (In English)
Nitz, D. (2009) Parietal cortex, navigation, and the construction of arbitrary reference frames for spatial information. Neurobiology of Learning and Memory, vol. 91, no. 2, pp. 179–185. https://doi.org/10.1016/j.nlm.2008.08.007 (In English)
O’Mara, S. M., Aggleton, J. P. (2019) Space and memory (far) beyond the hippocampus: Many subcortical structures also support cognitive mapping and mnemonic processing. Frontiers in Neural Circuits, vol. 13, article 52. https://doi.org/10.3389/fncir.2019.00052 (In English)
Persson, B. M., Ambrozova, V., Duncan, S. et al. (2022) Lateral entorhinal cortex lesions impair odor-context associative memory in male rats. Journal of Neuroscience Research, vol. 100, no. 4, pp. 1030–1046. https://doi.org/10.1002/jnr.25027 (In English)
Poucet, B., Lenck-Santini, P.-P., Paz-Villagrán, V., Save, E. (2003) Place cells, neocortex and spatial navigation: A short review. Journal of Physiology Paris, vol. 97, no. 4-6, pp. 537–546. https://doi.org/10.1016/j.jphysparis.2004.01.011 (In English)
Poucet, B., Save, E., Lenck-Santini, P.-P. (2000) Sensory and memory properties of hippocampal place cells. Reviews in the Neurosciences, vol. 11, no. 2-3, pp. 95–111. https://doi.org/10.1515/revneuro.2000.11.2-3.95 (In English)
Powell, A., Connelly, W. M., Vasalauskaite, A. et al. (2020) Stable encoding of visual cues in the mouse retrosplenial cortex. Cerebral Cortex, vol. 30, no. 8, pp. 4424–4437. https://doi.org/10.1093/cercor/bhaa030 (In English)
Radvansky, B. A., Dombeck, D. A. (2018) An olfactory virtual reality system for mice. Nature Communications, vol. 9, no. 1, article 839. http://doi.org/10.1038/s41467-018-03262-4 (In English)
Radvansky, B. A., Oh, J. Y., Climer, J. R., Dombeck, D. A. (2021) Behavior determines the hippocampal spatial mapping of a multisensory environment. Cell Reports, vol. 36, no. 5, article 109444. https://doi.org/10.1016/j.celrep.2021.109444 (In English)
Raithel, C. U., Gottfried, J. A. (2021) What are grid-like responses doing in the orbitofrontal cortex? Behavioral Neuroscience, vol. 135, no. 2, pp. 218–225. https://doi.org/10.1037/bne0000453 (In English)
Ravassard, P., Kees, A., Willers, B. et al. (2013) Multisensory control of hippocampal spatiotemporal selectivity. Science, vol. 340, no. 6138, pp. 1342–1346. https://doi.org/10.1126/science.1232655 (In English)
Rizzello, E., Martin, S. K., Rouine, J. et al. (2022) Place cells in the claustrum remap under NMDA receptor control. European Journal of Neuroscience, vol. 56, no. 2, pp. 3825–3838. https://doi.org/10.1111/ejn.15726 (In English)
Robertson, R. T., Kaitz, S. S. (1981) Thalamic connections with limbic cortex. I. Thalamocortical projections. Journal of Comparative Neurology, vol. 195, no. 3, pp. 501–525. https://doi.org/10.1002/cne.901950308 (In English)
Rogers, J. L., Kesner, R. P. (2006) Lesions of the dorsal hippocampus or parietal cortex differentially affect spatial information processing. Behavioral Neuroscience, vol. 120, no. 4, pp. 852–860. https://doi.org/10.1037/0735-7044.120.4.852 (In English)
Rolls, E. T., Deco, G., Huang, C.-C., Feng, J. (2022a) The human orbitofrontal cortex, vmPFC, and anterior cingulate cortex effective connectome: Emotion, memory, and action. Cerebral Cortex, vol. 33, no. 2, pp. 330–356. https://doi.org/10.1093/cercor/bhac070 (In English)
Rolls, E. T., Wirth, S., Deco, G. et al. (2022b) The human posterior cingulate, retrosplenial, and medial parietal cortex effective connectome, and implications for memory and navigation. Human Brain Mapping, vol. 44, no. 2, pp. 629–655. https://doi.org/10.1002/hbm.26089 (In English)
Rondi-Reig, L., Paradis, A.-L., Fallahnezhad, M. (2022) A Liaison brought to light: Cerebellum-hippocampus, partners for spatial cognition. The Cerebellum, vol. 21, no. 5, pp. 826–837. https://doi.org/10.1007/s12311-022-01422-3 (In English)
Rondi-Reig, L., Paradis, A.-L., Lefort, J. M. et al. (2014) How the cerebellum may monitor sensory information for spatial representation. Frontiers in System Neuroscience, vol. 8, article 205. https://doi.org/10.3389/fnsys.2014.00205 (In English)
Rowland, D. C., Weible, A. P., Wickersham, I. R. et al. (2013) Transgenically targeted rabies virus demonstrates a major monosynaptic projection from hippocampal area CA2 to medial entorhinal layer II neurons. Journal of Neuroscience, vol. 33, no. 37, pp. 14889–14898. https://doi.org/10.1523/JNEUROSCI.1046-13.2013 (In English)
Sakai, M., Chimoto, S., Qin, L., Sato, Y. (2009) Differential representation of spectral and temporal information by primary auditory cortex neurons in awake cats: Relevance to auditory scene analysis. Brain Research, vol. 1265, pp. 80–92. https://doi.org/10.1016/j.brainres.2009.01.064 (In English)
Saleem, A. B., Diamanti, E. M., Fournier, J. et al. (2018) Coherent encoding of subjective spatial position in visual cortex and hippocampus. Nature, vol. 562, no. 7725, pp. 124–127. https://doi.org/10.1038/s41586-018-0516-1 (In English)
Sauer, J.-F., Folschweiller, S., Bartos, M. (2022) Topographically organized representation of space and context in the medial prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, vol. 119, no. 6, article e2117300119. https://doi.org/10.1073/pnas.2117300119 (In English)
Save, E., Paz-Villagran, V., Alexinsky, T., Poucet, B. (2005) Functional interaction between the associative parietal cortex and hippocampal place cell firing in the rat. European Journal of Neuroscience, vol. 21, no. 2, pp. 522–530. https://doi.org/10.1111/j.1460-9568.2005.03882.x (In English)
Silkis, I. G. (2009) Uchastie trisinapticheskogo gippokampal’nogo puti v formirovanii nejronnykh otobrazhenij assotsiatsij “ob’ekt–mesto” (analiticheskij obzor) [Involvement of trisynaptic hippocampal pathway in generation of neural representations of object–place associations (analytical review)]. Zhurnal vysshej nervnoj deyatel’nosti im. I. P. Pavlova — I. P. Pavlov Journal of Higher Nervous Activity, vol. 59, no. 6, pp. 643–659. (In Russian)
Silkis, I. G. (2011) Preimuschestva ierarkhicheskogo obobscheniya i khraneniya otobrazhenii assotsiatsii “ob’ekt– mesto” v poljah gippokampa (Gipoteza) [Advantage of hierarchical generalization of and storage of the reoresentations of “object–place” associations in the hippocampal fields (A hypothesis)]. Zhurnal vysshej nervnoj deyatelnosti im. I. P. Pavlova — I. P. Pavlov Journal of Higher Nervous Activity, vol. 61, no. 1, pp. 5–23. (In Russian)
Silkis, I. G. (2014) Mekhanizmy vzaimozavisimogo vliyaniya prefrontal’noj kory, gippokampa i mindaliny na funktsionirovanie bazal’nykh gangliev i vybor povedeniya [The mechanisms of interdependent influence of prefrontal cortex, hippocampus and amygdala on the basal ganglia functioning and selection of behavior]. Zhurnal vysshej nervnoj deyatelnosti im. I. P. Pavlova — I. P. Pavlov Journal of Higher Nervous Activity, vol. 64, no. 1, pp. 82–100. https://doi.org/10.7868/S0044467714010110 (In Russian)
Silkis, I. G. (2016) Vklad dofamina v funktsionirovanie gippokampa pri prostranstvennom obuchenii (gipoteticheskij mekhanizm) [The contribution of dopamine to the functioning of the hippocampus during spatial learning (a hypothetical mechanism)]. Nejrokhimiya, vol. 33, no. 1, pp. 42–55. https://doi.org/10.7868/S1027813316010131 (In Russian)
Silkis, I. G. (2021a) Vliyanie dofamina na vzaimozavisimoe funktsionirovanie mozzhechka, bazal’nykh gangliev i novoj kory (gipoteticheskij mekhanizm) [Effect of dopamine on the interdependent functioning of the cerebellum, basal ganglia and neocortex (a hypothetical mechanism)]. Uspekhi fiziologicheskikh nauk, vol. 52, no. 1, pp. 49–63. https://doi.org/10.31857/S0301179821010094 (In Russian)
Silkis, I. G. (2021b) Vozmozhnye mekhanizmy vzaimozavisimogo uchastiya bazal’nykh gangliev i mozzhechka v funktsionirovanii dvigatel’nykh i sensornykh sistem [Possible mechanisms of interdependent roles of the basal ganglia and cerebellum in the functioning of motor and sensory systems]. Integrativnaya fiziologiya — Integrative Physiology, vol. 2, no. 2, pp. 135–146. https://doi.org/10.33910/2687-1270-2021-2-2-135-146 (In Russian)
Silkis, I. G. (2021c) Uchastie yader gipotalamusa v formirovanii assotsiatsij “ob’ekt–mesto” na nejronakh polya СA2 gippokampa (gipoteticheskij mekhanizm) [Involvement of hypothalamic nuclei in the generation of object–place associations on neurons of the hippocampal CA2 field (a hypothetical mechanism)]. Zhurnal vysshej nervnoj deyatel’nosti im. I. P. Pavlova — I. P. Pavlov Journal of Higher Nervous Activity, vol. 71, no. 2, pp. 147–163. https://doi.org/10.31857/S0044467721020106 (In Russian)
Silkis, I. G. (2022) Mekhanizmy funktsionirovaniya konnektoma, vklyuchayushchego neokorteks, gippokamp, bazal’nye ganglii, mozzhechok i talamus [Mechanisms of functionimg of a connectome that includes the neocortex, hippocampus, basal ganglia, cerebellum and thalamus]. Zhurnal vysshej nervnoj deyatelnosti im. I. P. Pavlova, vol. 72, no. 1, pp. 36–54. https://doi.org/10.31857/S0044467722010105 (In Russian)
Smith, J. B., Alloway, K. D. (2010) Functional specificity of claustrum connections in the rat: Interhemispheric communication between specific parts of motor cortex. Journal of Neuroscience, vol. 30, no. 50, pp. 16832–16844. https://doi.org/10.1523/JNEUROSCI.4438-10.2010 (In English)
Srinivas, K. V., Buss, E. W., Sun, Q. et al. (2017) The dendrites of CA2 and CA1 pyramidal neurons differentially regulate information flow in the cortico-hippocampal circuit. Journal of Neurosciences, vol. 37, no. 12, pp. 3276–3293. https://doi.org/10.1523/JNEUROSCI.2219-16.2017 (In English)
Stevenson, E. L., Caldwell, H. K. (2014) Lesions to the CA2 region of the hippocampus impair social memory in mice. European Journal of Neuroscience, vol. 40, no. 9, pp. 3294–3301. https://doi.org/10.1111/ejn.12689 (In English)
Tanné-Gariépy, J., Boussaoud, D., Rouiller, E. M. (2002) Projections of the claustrum to the primary motor, premotor, and prefrontal cortices in the macaque monkey. Journal of Comparative Neurology, vol. 454, no. 2, pp. 140–157. https://doi.org/10.1002/cne.10425 (In English)
Taxidis, J., Pnevmatikakis, E. A., Dorian, C. C. et al. (2020) Differential emergence and stability of sensory and temporal representations in context-specific hippocampal sequences. Neuron, vol. 108, no. 5, pp. 984–998.e9. https://doi.org/10.1016/j.neuron.2020.08.028 (In English)
Terem, A., Gonzales, B. J., Peretz-Rivlin, N. et al. (2020) Claustral neurons projecting to frontal cortex mediate contextual association of reward. Current Biology, vol. 30, no. 18, pp. 3522–3532.e6. https://doi.org/10.1016/j.cub.2020.06.064 (In English)
Tomás Pereira, I., Agster, K. L, Burwell, R. D. (2016) Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. I. afferents. Hippocampus, vol. 26, no. 9, pp. 1189–1212. https://doi.org/10.1002/hipo.22603 (In English)
Tsanov, M., O’Mara, S. M. (2015) Decoding signal processing in thalamo-hippocampal circuitry: Implications for theories of memory and spatial processing. Brain Research, vol. 1621, pp. 368–379. https://doi.org/10.1016/j.brainres.2014.12.003 (In English)
Van Cauter, T., Poucet, B., Save, E. (2008) Unstable CA1 place cell representation in rats with entorhinal cortex lesions. European Journal of Neuroscience, vol. 27, no. 8, pp. 1933–1946. https://doi.org/10.1111/j.1460-9568.2008.06158.x (In English)
Wang, Q., Ng, L., Harris, J. A. et al. (2017) Organization of the connections between claustrum and cortex in the mouse. Journal of Comparative Neurology, vol. 525, no. 6, pp. 1317–1346. https://doi.org/10.1002/cne.24047 (In English)
Wang, Q., Yang, S. T., Li, B. M. (2015) Neuronal representation of audio-place associations in the medial prefrontal cortex of rats. Molecular Brain, vol. 8, no. 1, article 56. https://doi.org/10.1186/s13041-015-0147-5 (In English)
Watson, T. C., Obiang, P., Torres-Herraez, A. et al. (2019) Anatomical and physiological foundations of cerebello-hippocampal interaction. eLife, vol. 8, article e41896. https://doi.org/10.7554/eLife.41896 (In English)
Wilson, D. I. G., Watanabe, S., Milner, H., Ainge, J. A. (2013) Lateral entorhinal cortex is necessary for associative but not nonassociative recognition memory. Hippocampus, vol. 23, no. 12, pp. 1280–1290. https://doi.org/10.1002/hipo.22165 (In English)
Wirtshafter, H. S., Disterhoft, J. F. (2022) Place cells are nonrandomly clustered by field location in CA1 hippocampus. Hippocampus, vol. 33, no. 2, pp. 65–84. https://doi.org/10.1002/hipo.23489 (In English)
Witter, M. P., Room, P., Groenewegen, H. J., Lohman, A. H. M. (1988) Reciprocal connections of the insular and piriform claustrum with limbic cortex: An anatomical study in the cat. Neuroscience, vol. 24, no. 2, pp. 519–539. https://doi.org/10.1016/0306-4522(88)90347-8 (In English)
Zhang, B., Naya, Y. (2020) Medial prefrontal cortex represents the object-based cognitive map when remembering an egocentric target location. Cerebral Cortex, vol. 30, no. 10, pp. 5356–5371. https://doi.org/10.1093/cercor/bhaa117 (In English)
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Isabella G. Silkis
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.