Stress-induced analgesia: The role of the HPA axis hormones

Authors

  • Natalia I. Yarushkina Pavlov Institute of Physiology, Russian Academy of Sciences

DOI:

https://doi.org/10.33910/2687-1270-2020-1-1-23-31

Keywords:

stress-induced analgesia, HPA axis, glucocorticoids, corticotropinreleasing factor, corticotropin-releasing factor receptors type 1 and 2, glucocorticoid receptors

Abstract

One of adaptive consequences of the stress response is a short-term decrease in pain sensitivity in humans and animals known as “stress-induced analgesia” (SIA). The HPA axis is a key system that activates during stress and provides organism adaptation. One of the mechanisms of SIA may be associated with the HPA hormones, in particular with corticotropin-releasing factor (CRF), the major hormone of the HPA axis, and glucocorticoids, whose analgesic properties are well known and used in medical practice. Based on the results of our research and literature review, the aim of the paper was to analyze SIA mechanisms related to CRF and glucocorticoid hormones mediated by CRF receptors 1 and 2 as well as glucocorticoid and opioid receptors.

References

Ahmad, A. H., Zakaria, R. (2015) Pain in times of stress. Malaysian Journal of Medical Sciences, vol. 22 (Spec. issue), pp. 51–60. (In English)

Amit, Z., Galina, Z. H. (1988) Stress induced analgesia plays an adaptive role in the organization of behavioral responding. Brain Research Bulletin, vol. 21, no. 6, pp. 955–958. DOI: 10.1016/0361-9230(88)90033-0 (In English)

Andreoli, M., Marketkar, T., Dimitrov, E. (2017) Contribution of amygdala CRF neurons to chronic pain. Experimental Neurology, vol. 298 (Pt. A), pp. 1–12. DOI: 10.1016/j.expneurol.2017.08.010 (In English)

Beecher, H. K. (1946) Pain in men wounded in battle. Annals of Surgery, vol. 123, no. 1, pp. 96–105. (In English)

Butler, R. K., Finn, D. P. (2009) Stress-induced analgesia. Progress in Neurobiology, vol. 88, no. 3, pp. 184–202. DOI: 10.1016/j.pneurobio.2009.04.003 (In English)

Diener, S. J., Wessa, M., Ridder, S. et al. (2012) Enhanced stress analgesia to a cognitively demanding task in patients with posttraumatic stress disorder. Journal of Affective Disorders, vol. 136, no. 3, pp. 1247–1251. DOI: 10.1016/j.jad.2011.06.013 (In English)

Filaretov, A. A., Bogdanov, A. I., Yarushkina, N. I. (1996) Stress-induced analgesia. The role of hormones produced by the hypophyseal-adrenocortical system. Neuroscience and Behavioral Physiology, vol. 26, no. 6, pp. 572–578. DOI: 10.1007/bf02359502 (In English)

Ford, G. K., Finn, D. P. (2008) Clinical correlates of stress-induced analgesia: Evidence from pharmacological studies. Pain, vol. 140, no. 1, pp. 3–7. PMID: 18930350. DOI: 10.1016/j.pain.2008.09.023 (In English)

Gray, T. S., Magnuson, D. J. (1992) Peptide immunoreactive neurons in the amygdala and the bed nucleus of the stria terminalis project to the midbrain central gray in the rat. Peptides, vol. 13, no. 3, pp. 451–460. DOI: 10.1016/0196-9781(92)90074-D (In English)

Hauger, R. L., Risbrough, V., Brauns, O., Dautzenberg, F. M. (2006) Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS & Neurological Disorders — Drug Targets, vol. 5, no. 4, pp. 453–479. DOI: 10.2174/187152706777950684 (In English)

Heinricher, M. M., Tavares, I., Leith, J. L., Lumb, B. M. (2009) Descending control of nociception: Specificity, recruitment and plasticity. Brain Research Reviews, vol. 60, no. 1, pp. 214–225. DOI: 10.1016/j.brainresrev.2008.12.009 (In English)

Helmstetter, F., Tershner, S. (1994) Lesions of the periaqueductal gray and rostral ventromedial medulla disrupt antinociceptive but not cardiovascular aversive conditional responses. Journal of Neuroscience, vol. 14, no. 11, pt. 2, pp. 7099–7108. PMID: 7965101. (In English)

Hummel, M., Cummons, T., Lu, P. et al. (2010) Pain is a salient “stressor” that is mediated by corticotropin-releasing factor-1 receptors. Neuropharmacology, vol. 59, no. 3, pp. 160–166. PMID: 20470804. DOI: 10.1016/j.neuropharm.2010.05.001 (In English)

Ji, G., Fu, Y., Adwanikar, H. et al. (2013) Non-pain-related CRF1 activation in the amygdala facilitates synaptic transmission and pain responses. Molecular Pain, vol. 9, article 2. DOI: 10.1186/1744-8069-9-2 (In English)

Kim, E. J., Horovitz, O., Pellman, B. A. et al. (2013) Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats. Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 36, pp. 14795–14800. DOI: 10.1073/pnas.1310845110 (In English)

Lariviere, W. R, Melzack, R. (2000) The role of corticotropin-releasing factor in pain and analgesia. Pain, vol. 84, no. 1, pp. 1–12. PMID: 10601667. DOI: 10.1016/s0304-3959(99)00193-1 (In English)

Lewis, J. W., Cannon, J. T., Liebeskind, J. C. (1980) Opioid and nonopioid mechanisms of stress induced analgesia. Science, vol. 208, no. 4444, pp. 623–625. DOI: 10.1126/science.7367889 (In English)

Li, J.-N., Sheets, P. L. (2018) The central amygdala to periaqueductal gray pathway comprises intrinsically distinct neurons differentially affected in a model of inflammatory pain. Journal of Physiology, vol. 596, no. 24, pp. 6289–6305. DOI: 10.1113/JP276935 (In English)

Likar, R., Mousa, S. A., Steinkellner, H. et al. (2007) Involvement of intra-articular corticotropin-releasing hormone in postoperative pain modulation. Clinical Journal of Pain, vol. 23, no. 2, pp. 136–142. DOI: 10.1097/01.ajp.0000210954.93878.0d (In English)

Long, C. C., Sadler, K. E., Kolber, B. J. (2016) Hormonal and molecular effects of restraint stress on formalin-induced pain-like behavior in male and female mice. Physiology & Behavior, vol. 165, pp. 278–285. DOI: 10.1016/j.physbeh.2016.08.009 (In English)

McLennan, A. J., Drugan, R., Myson, R. et al. (1982) Corticosterone: a critical factor in an opioid form of stressinduced analgesia. Science, vol. 215, no. 4539, pp. 1530–1532. DOI: 10.1126/science.7063862 (In English)

Michaux, G., Magerl, W., Anton, F., Treede, R.-D. (2012) Experimental characterization of the effects of acute of stresslike doses of hydrocortisone in human neurogenic hyperalgesia models. Pain, vol. 153, no. 2, pp. 420–428. PMID: 22178393. DOI: 10.1016/j.pain.2011.10.043 (In English)

Miguel, T. T., Nunes-De-Souza, R. L. (2011) Anxiogenic and antinociceptive effects induced by corticotropinreleasing factor (CRF) injections into the periaqueductal gray are modulated by CRF1 receptor in mice. Hormones and Behavior, vol. 60, no. 3, pp. 292–300. DOI: 10.1016/j.yhbeh.2011.06.004 (In English)

Miguez, G., Laborda, M. A., Miller, R. R. (2014) Classical conditioning and pain: conditioned analgesia and hyperalgesia. Acta Psychologica, vol. 145, pp. 10–20. DOI: 10.1016/j.actpsy.2013.10.009 (In English)

Myers, B., Greenwood-Van Meerveld, B. (2010) Divergent effects of amygdala glucocorticoid and mineralocorticoid receptors in the regulation of visceral and somatic pain. American Journal of Physiology. Gastrointestinal and Liver Physiology, vol. 298, no. 2, pp. G295–G303. DOI: 10.1152/ajpgi.00298.2009 (In English)

Neugebauer, V. (2015) Amygdala pain mechanisms. In: H.-G. Schaible (ed.). Pain Control. Berlin; Heidelberg: Springer Verlag, pp. 261–284. (Handbook of Experimental Pharmacology. Vol. 227.) DOI: 10.1007/978-3-662-46450-2_13 (In English)

Olango, W. M., Roche, M., Ford, G. K. et al. (2012) The endocannabinoid system in the rat dorsolateral periaqueductal grey mediates fear-conditioned analgesia and controls fear expression in the presence of nociceptive tone. British Journal of Pharmacology, vol. 165, no. 8, pp. 2549–2560. DOI: 10.1111/j.1476-5381.2011.01478.x (In English)

Ossipov, M. H. (2012) The perception and endogenous modulation of pain. Scientifica (Cairo), vol. 2012, article ID 561761. DOI: 10.6064/2012/561761 (In English)

Pitcher, M. H. (2018) The impact of exercise in rodent models of chronic pain. Current Osteoporosis Reports, vol. 16, no. 4, pp. 344–359. DOI: 10.1007/s11914-018-0461-9 (In English)

Rivier, C. L., Grigoriadis, D. E., Rivier, J. E. (2003) Role of corticotropin-releasing factor receptors type 1 and 2 in modulating the rat adrenocorticotropin response to stressors. Endocrinology, vol. 144, no. 6, pp. 2396–2403. DOI: 10.1210/en.2002-0117 (In English)

Rouwette, T., Vanelderen, P., Roubos, E. W. et al. (2012) The amygdala, a relay station for switching on and off pain. European Journal of Pain, vol. 16, no. 6, pp. 782–792. DOI: 10.1002/j.1532-2149.2011.00071.x (In English)

Schafer, M., Mousa, S. A., Zhang, Q. et al. (1996) Expression of corticotropin-releasing factor in inflamed tissue is required for intrinsic peripheral opioid analgesia. Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 12, pp. 6096–6100. DOI: 10.1073/pnas.93.12.6096 (In English)

Sutton, L. C., Fleshner, M., Mazzeo, R. et al. (1994) A permissive role of corticosterone in an opioid form of stressinduced analgesia: Blockade of opiate analgesia is not due to stress-induced hormone release. Brain Research, vol. 663, no. 1, pp. 19–29. DOI: 10.1016/0006-8993(94)90458-8 (In English)

Swanson, L. W., Sawchenko, P. E., Rivier, J. et al. (1983) Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: An immunohistochemical study. Neuroendocrinology, vol. 36, no. 3, pp. 165–186. DOI: 10.1159/000123454 (In English)

Terman, G. W., Liebeskind, J. C. (1986) Relation of stress-induced analgesia to stimulation-produced analgesia. Annals of the New York Academy of Sciences, vol. 467, no. 1, pp. 300–308. DOI: 10.1111/j.1749-6632.1986.tb14636.x (In English)

Watkins, L. R., Drugan, R., Hyson, R. L. et al. (1984) Opiate and non-opiate analgesia induced by inescapable tail-shock: Effects of dorsolateral funiculus lesions and decerebration. Brain Research, vol. 291, no. 2, pp. 325–336. DOI: 10.1016/0006-8993(84)91265-4 (In English)

Watkins, L. R., Mayer, D. J. (1982) Organization of endogenous opiate and nonopiate pain control systems. Science, vol. 216, no. 4551, pp. 1185–1192. DOI: 10.1126/science.6281891 (In English)

Yarushkina, N. I. (2008) The role of hypothalamo-hypophyseal-adrenocortical system hormones in controlling pain sensitivity. Neuroscience and Behavioral Physiology, vol. 38, no. 8, pp. 759–766. DOI: 10.1007/s11055-008-9044-z (In English)

Yarushkina, N. I., Filaretova, L. P. (2018) The peripheral corticotropin-releasing factor (CRF)-induced analgesic effect on somatic pain sensitivity in conscious rats: Involving CRF, opioid and glucocorticoid receptors. Inflammopharmacology, vol. 26, no. 2, pp. 305–318. DOI: 10.1007/s10787-018-0445-5 (In English)

Yarushkina, N. I., Bagaeva, T. R., Filaretova, L. P. (2009) Analgesic actions of corticotropin-releasing factor (CRF) on somatic pain sensitivity: involvement of glucocorticoid and CRF-2 receptors. Neuroscience and Behavioral Physiology, vol. 39, no. 9, pp. 819–823. DOI: 10.1007/s11055-009-9212-9 (In English)

Yarushkina, N. I., Bagaeva, T. R., Filaretova, L. P. (2011) Central corticotropin-releasing factor (CRF) may attenuate somatic pain sensitivity through involvement of glucocorticoids. Journal of Physiology and Pharmacology, vol. 62, no. 5, pp. 541–548. PMID: 22204802. (In English)

Yarushkina, N. I., Bagaeva, T. R., Filaretova, L. P. (2015a) Mechanisms of the analgesic action of corticotrophinreleasing factor on somatic pain sensitivity in rats. Neuroscience and Behavioral Physiology, vol. 45, no. 4, pp. 449–457. DOI: 10.1007/s11055-015-0095-7 (In English)

Yarushkina, N. I., Bagaeva, T. R., Filaretova, L. P. (2015b) Somatic pain sensitivity in rats exposed to the harmful actions of indomethacin on the gastrointestinal tract. Neuroscience and Behavioral Physiology, vol. 45, no. 7, pp. 780–788. (In English)

Yarushkina, N. I., Bagaeva, T. R., Filaretova, L. P. (2016a) Effects of corticotropin-releasing factor (CRF) on somatic pain sensitivity in conscious rats: Involvement of types 1 and 2 CRF receptors. Neuroscience and Behavioral Physiology, vol. 46, no. 4, pp. 472–477. DOI: 10.1007/s11055-016-0260-7 (In English)

Yarushkina, N. I., Bagaeva, T. R., Filaretova, L. P. (2016b) Involvement of corticotropin-releasing factor receptors type 2, located in periaquaductal gray matter, in central and peripheral CRF-induced analgesic effect on somatic pain sensitivity in rats. Journal of Physiology and Pharmacology, vol. 67, no. 4, pp. 595–603. (In English)

Published

2020-03-02

Issue

Section

Reviews